|
|
|
Euler-modified pulley-type microring on lithium niobate platform |
| Wen-Hui Song(宋文慧)1,†, Dong-Jie Guo(郭东洁)1,†, Ran Yang(杨然)1, Jia-Chen Duan(端家晨)1, Zi-Shuo Gu(顾子硕)1, Ji Tang(汤济)1,2, Zhilin Ye(叶志霖)1,2, Xiao-Hui Tian(田晓慧)1,‡, Kunpeng Jia(贾琨鹏)1, Zhong Yan(严仲)1, Zhijun Yin(尹志军)2, Yan-Xiao Gong(龚彦晓)1, Zhenda Xie(谢臻达)1, Zhenlin Wang(王振林)1, and Shi-Ning Zhu(祝世宁)1 |
1 National Laboratory of Solid State Microstructures, School of Physics, School of Electronic Science and Engineering, College of Engineering and Applied Sciences, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China; 2 NanZhi Institute of Advanced Optoelectronic Integration Technology Co., Ltd., Nanjing 210093, China; (Received 18 April 2025; revised manuscript received 14 May 2025; accepted manuscript online 11 July 2025) |
|
|
|
|
Abstract Microring resonators, as essential components of photonic integrated circuits, offer compact size, wavelength selectivity, and strong resonance effects, making them invaluable in optical computing, on-chip interconnects, and quantum photonics. The proposal of the pulley-type microring enhances the coupling strength, but also brings about issues such as mode mismatch and the excitation of higher-order modes. Here, a lithium niobate microring resonator coupled with a pulley bus waveguide based on modified Euler curves is proposed. This Euler-modified pulley bus minimizes mode mismatch at bending junctions, effectively suppressing higher-order mode excitation. The design achieves a high $Q$ factor (exceeding $10^5$) and strong coupling efficiency (83%) within a compact structure of 70 μm radius. Due to its simple structure and ease of fabrication, the Euler-modified pulley-type microring holds practical value for applications requiring high-quality microring resonators.
|
Received: 18 April 2025
Revised: 14 May 2025
Accepted manuscript online: 11 July 2025
|
|
PACS:
|
42.82.-m
|
(Integrated optics)
|
| |
42.60.Da
|
(Resonators, cavities, amplifiers, arrays, and rings)
|
| |
42.79.Gn
|
(Optical waveguides and couplers)
|
|
| Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2024YFB2808300), the National Natural Science Foundation of China (Grant Nos. 62293523, 62288101, 62305156, 92463304, 92463308, 12304421, and 12341403), Zhangjiang Laboratory (Grant No. ZJSP21A001), Program of Jiangsu Natural Science Foundation (Grant Nos. BK20230770 and BK20232033), and Guangdong Major Project of Basic and Applied Basic Research (Grant No. 2020B0301030009). |
Corresponding Authors:
Xiao-Hui Tian
E-mail: tianxiaohui@nju.edu.cn
|
Cite this article:
Wen-Hui Song(宋文慧), Dong-Jie Guo(郭东洁), Ran Yang(杨然), Jia-Chen Duan(端家晨), Zi-Shuo Gu(顾子硕), Ji Tang(汤济), Zhilin Ye(叶志霖), Xiao-Hui Tian(田晓慧), Kunpeng Jia(贾琨鹏), Zhong Yan(严仲), Zhijun Yin(尹志军), Yan-Xiao Gong(龚彦晓), Zhenda Xie(谢臻达), Zhenlin Wang(王振林), and Shi-Ning Zhu(祝世宁) Euler-modified pulley-type microring on lithium niobate platform 2025 Chin. Phys. B 34 084205
|
[1] Vlasov Y A and McNab S J 2004 Opt. Express 12 1622 [2] Lin J T, Bo F, Cheng Y and Xu J J 2020 Photonics Res. 8 1910 [3] Qi Y F and Li Y 2020 Nanophotonics 9 1287 [4] Dorin B A and Ye W N 2014 Opt. Express 22 4547 [5] Pelucchi E, Fagas G, Aharonovich I, Englund D, Figueroa E, Gong Q H, Hannes H, Liu J, Lu C Y, Matsuda N, Pan J W, Schreck F, Sciarrino F, Silberhorn C, Wang J W and Jöns K D 2022 Nat. Rev. Phys. 4 194 [6] Li S Y, Zhou Y Y, Dong J J, Zhang X L, Cassan E, Hou J, Yang C Y,Chen S P, Gao D S and Chen H Y 2018 Optica 5 1549 [7] Seok T J, Kwon K, Henriksson J, Luo J H and Wu M C 2019 Optica 6 490 [8] Chiles J and Fathpour S 2014 Optica 1 350 [9] Li G L, Yao J, Thacker H, Mekis A, Zheng X Z, Shubin I, Luo Y, Lee J H, Raj K, Cunningham J E and Krishnamoorthy A V 2012 Opt. Express 20 12035 [10] Cherchi M, Ylinen S, Harjanne M, Kapulainen M and Aalto T 2013 Opt. Express 21 17814 [11] Van V 2016 Optical Microring Resonators: Theory, Techniques, and Applications (Boca Raton, FL: CRC Press) [12] Bogaerts W, De Heyn P, Van Vaerenbergh T, De Vos K, Kumar Selvaraja S, Claes T, Dumon P, Bienstman P, Van Thourhout D and Baets R 2012 Laser Photonics Rev. 6 47 [13] Qiu C Y, Xiao H F, Wang L H and Tian Y H 2022 Front. Optoelectron. 15 1 [14] Xu Q F, Schmidt B, Shakya J and Lipson M 2006 Opt. Express 14 9431 [15] Liu J C, Xia G Y, Hong Q, Zhu P Y, Zhang K K, Xia K Y, Xu P, Qin S Q and Zhu Z H 2024 Chin. Phys. B 34 034204 [16] Su X, Jin B B, Tang J S and Xia K Y 2024 Chin. Phys. B 41 074202 [17] Xu L, Wang L X, Chen G J, Chen L, Yang Y H, Xu X B, Liu A P, Li C F, Guo G C, Zou C L and Xiang G Y 2023 Chin. Phys. B 40 093701 [18] Sun Y Z and Fan X D 2011 Anal. Bioanal. Chem. 399 205 [19] Zhang M, Wang C, Cheng R, Shams-Ansari A and Lončar M 2017 Optica 4 1536 [20] Liang G Z, Huang H Q, Mohanty A, Shin M C, Ji X C, Carter M J, Shrestha S, Lipson M and Yu N F 2021 Nat. Photonics 15 908 [21] Chen L, Sherwood-Droz N and Lipson M 2007 Opt. Lett. 32 3361 [22] Terrel M, Digonnet M J F and Fan S H 2009 Laser Photonics Rev. 3 452 [23] Nawrocka M S, Liu T, Wang X and Panepucci R R 2006 Appl. Phys. Lett. 89 071110 [24] Menon V M, Tong W and Forrest S R 2004 IEEE Photonics Technol. Lett. 16 1343 [25] Poon J K S, Scheuer J, Xu Y and Yariv A 2004 J. Opt. Soc. Am. B 21 1665 [26] Hosseini E S, Yegnanarayanan S, Atabaki A H, Soltani M and Adibi A 2010 Opt. Express 18 2127 [27] Xie J Y, Zhou L J, Sun X M, Zou Z, Lu L J, Zhu H K, Li X W and Chen J P 2014 Appl. Opt. 53 878 [28] Cai D P, Lu J H, Chen C C, Lee C C, Lin C E and Yen T J 2017 Sci. Rep. 5 10078 [29] Zhu D, Shao L B, Yu M J, Cheng R, Desiatov B, Xin C J, Hu Y W, Holzgrafe J, Ghosh S, Shams-Ansari A, Puma E, Sinclair N, Reimer C, Zhang M and Loněar M 2021 Adv. Opt. Photonics 13 242 [30] Honardoost A, Abdelsalam K and Fathpour S 2020 Laser Photonics Rev.14 2000088 [31] Kitoh T, Takato N, YasuMand Kawachi M 1995 J. Lightwave Technol. 13 555 [32] Yen M H, Feng P Y, Lin C E, Chen C C and Chang J Y 2018 Micromachines 9 226 [33] Fujisawa T, Makino S, Sato T and Saitoh K 2017 Opt. Express 25 9150 [34] Jiang X H, Wu H and Dai D X 2018 Opt. Express 26 17680 |
| No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|