Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(8): 087502    DOI: 10.1088/1674-1056/add506
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Wideband near-infrared emission from GaScO3:Cr3+ phosphors with a perovskite structure

Chong Li(李翀)1, Mengyu Zhang(张梦宇)1, Chuancheng Zhang(张传成)1, Wenzhi Su(宿文志)1, Yong Zou(邹勇)1, Shoujun Ding(丁守军)1,2,†, and Qingli Zhang(张庆礼)3
1 School of Microelectronics and Data Science, Anhui University of Technology, Maanshan 243002, China;
2 Anhui Provincial Joint Key Laboratory of Disciplines for Industrial Big Data Analysis and Intelligent Decision, Maanshan 243002, China;
2 Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Hefei 230031, China
Abstract  Cr$^{3+}$-activated phosphors have attracted significant attention for their tunable emission, spanning narrow-band red to broadband near-infrared (NIR) luminescence, depending on the crystal field environment. Here, we report the realization of wideband NIR emission in Cr$^{3+}$-doped GaScO$_{3}$ (GaScO$_{3}$:Cr$^{3+}$) phosphors with perovskite structure. The phosphors were synthesized by traditional solid-state reaction method. The first-principles calculations were conducted and the results demonstrate that the octahedral [GaO$_6$] sites exhibit relatively weak crystal field strength ($Dq/B\approx 2.2$), facilitating efficient spin-allowed transitions of Cr$^{3+}$ from the $^{4}$T$_{2}$ state to the $^{4}$A$_{2}$ state. The photoluminescence spectroscopy revealed an exceptionally broad NIR emission band from a range of 700 nm-1200 nm with full width at half maximum (FWHM) of 145 nm under 465-nm excitation. Overall, these results highlight the viability of GaScO$_{3}$:Cr$^{3+}$ as a highly promising material for wideband NIR applications.
Keywords:  GaScO$_{3}$      perovskite phosphors      Cr$^{3+}$-doped      near-infrared emission      density functional theory  
Received:  21 March 2025      Revised:  28 April 2025      Accepted manuscript online:  07 May 2025
PACS:  75.20.En (Metals and alloys)  
  61.72.-y (Defects and impurities in crystals; microstructure)  
  76.30.Fc (Iron group (3d) ions and impurities (Ti-Cu))  
  78.55.-m (Photoluminescence, properties and materials)  
  71.15.Mb (Density functional theory, local density approximation, gradient and other corrections)  
Fund: Project supported by the Natural Science Research Project of Anhui Provincial Education Department for Excellent Young Scholars (Grant No. 2024AH030007) and the National Natural Science Foundation of China (Grant No. 52202001).
Corresponding Authors:  Shoujun Ding     E-mail:  sjding@ahut.edu.cn

Cite this article: 

Chong Li(李翀), Mengyu Zhang(张梦宇), Chuancheng Zhang(张传成), Wenzhi Su(宿文志), Yong Zou(邹勇), Shoujun Ding(丁守军), and Qingli Zhang(张庆礼) Wideband near-infrared emission from GaScO3:Cr3+ phosphors with a perovskite structure 2025 Chin. Phys. B 34 087502

[1] Yu D C, Ding Q Y, Shen T T, Qiu L, He F Q, Han X X, Song E H, Zhuang S L and Zhang D W 2024 Dalton Trans. 53 3702
[2] Ding Q Y, Wu J C, Yu D C, Han X X, Zhou Y Y, Shen T T, Ma Y F, Zhuang S L and Zhang D W 2024 J. Mater. Chem. C 12 2184
[3] Zhuo M P, Wang X D and Liao L S 2022 Small Sci. 2 2200029
[4] Lou L L, Zhao S, Yuan SW, Zhu D Y,Wu F G and Mu Z F 2022 Inorg. Chem. Front. 9 3522
[5] Ding S J, Ren H, Liu W P, He A F, Tang X B and Zhang Q L 2022 CrystEngComm. 24 818
[6] Huang H, Li R F, Jin S L, Li Z F, Huang P, Hong J Q, Du SW, ZhengW, Chen X Y and Chen D Q 2021 ACS Appl. Mater. Interfaces 13 34561
[7] Yu D C, Zhou Y S, Ma C S, Melman J H, Baroudi K M, LaCapra M and Riman R E 2019 ACS Appl. Electron. Mater. 1 2325
[8] Jin S Y and Xu X S 2024 Chin. Phys. B 33 036102
[9] Zhang Q Q, Liu D J, Wang Z N, Dang P P, Lian H Z, Li G G and Lin J 2023 Adv. Opt. Mater. 11 2202478
[10] Liang S S, Shang M M, Lian H Z, Li K, Zhang Y and Lin J 2016 J. Mater. Chem. C 4 6409
[11] He S, Zhang L L, Wu H, Wu H J, Pan G H, Hao Z D, Zhang X, Zhang L G, Zhang H and Zhang J H 2020 Adv. Opt. Mater. 8 1901684
[12] Botella P, Enrichi F, Vomiero A, Munoz-Santiuste J E, Garg A B, Arvind A, Manjon F J, Segura A and Errandonea D 2020 ACS Omega. 5 2148
[13] Saikia S, Ghosh A and Nag A 2023 Angew. Chem. Int. Ed. Engl. 62 e202307689
[14] Li J H, Zhang Q L, Sun G H, Gao J Y, Dou R Q, Wang X F and Ding S J 2024 Chin. Phys. B 33 117601
[15] Qiao J W, Zhou G J, Zhou Y Y, Zhang Q Y and Xia Z G 2019 Nat. Commun. 10 5267
[16] Zabiliute A, Butkute S, Zukauskas A, Vitta P and Kareiva A 2014 Appl. Opt. 53 907
[17] Zhu F M, Gao Y, Zhu B M, Huang L and Qiu Ji B 2024 Chem. Eng. J. 479 147568
[18] Liu G C, Molokeev Maxim S, Lei B F and Xia Z G 2020 J. Mater. Chem. C 8 9322
[19] Mao M Q, Zhou T L, Zeng H T, Wang L, Huang F, Tang X Y and Xie R J 2020 J. Mater. Chem. C 8 1981
[20] Wang C P, Wang X M, Zhou Y, Zhang S, Li C, Hu D F, Xu L and Jiao H 2019 ACS Appl. Electron. Mater. 1 1046
[21] Lin Q M, Wang Q, Liao M, Xiong M X, Feng X, Zhang X, Dong H F, Zhu D Y, Wu F G and Mu Z F 2021 ACS Appl. Mater. Interfaces 13 18274
[22] Zheng L W, Kuang J L, Shen J X, Wu H J, Wu H, Luo Y S, Pan G H, Hao Z D, Zhang L L and Zhang J H 2023 ACS Appl. Opt. Mater. 1 1150
[23] Fang M H, Huang P Y, Bao Z, Majewska Natalia, Lésniewski Tadeusz, Mahlik Sebastian, Grinberg Marek, Leniec Grzegorz, Kaczmarek Slawomir M, Yang C W, Lu K M, Sheu H S and Liu R S 2020 Chem. Mater. 32 2166
[24] Zhang C C, Ding S J, Wang M M, Ren H, Tang X B, Zou Y, Dou R Q and Liu W P 2023 Front. Optoelectron. 16 31
[25] Attah-Baah J M, Santos C, Silva R S, Oliveira J L, Jucá R F, Costa B F O, Matos R S, Escote M T, Silva R S, Rezende M V S and Ferreira N S 2024 Ceram. Int. 50 35714
[26] de Jesus Pereira A L, Sans J A, Vilaplana R, Ray S, Tadge P, Godoy A, Horta I M, da Silva-Sobrinho A S, Rodríguez-Hernández P, Muñoz A, Popescu C and Manjón F J 2024 Minerals 15 21
[27] Yao R C, Wan L Y, Li B S and Wang Y F 2024 Appl. Phys. Express 17 012004
[28] Pugh S F 2009 Philos. Mag. 45 823
[29] Born Max 2008 Math. Proc. Cambridge Philos. Soc. 36 160
[30] Dar Sajad A, Khandy Shakeel A, Islam I, Gupta D C, Sakalle U K, Srivastava V and Parrey K 2017 Chin. J. Phys. 55 1769
[31] Mubashir S, Butt Mehwish K, Yaseen M, Iqbal J, Iqbal M, Murtaza A and Laref A 2021 Optik 239 166694
[32] Gassoumi A and Saad H E M M 2016 Mater. Sci. Semicond. Process. 50 14
[33] Behram Rasul B, Iqbal M A, Alay-e-Abbas S M, Sajjad M, Yaseen M, ArshadMI and Murtaza G 2016 Mater. Sci. Semicond. Process. 41 297
[34] Zhong J Y, Zhuo Y, Du F, Zhang H S, Zhao W R, You S H and Brgoch Jakoah 2021 Adv. Opt. Mater. 10 2101800
[35] Makula P, Pacia M and Macyk W 2018 J. Phys. Chem. Lett. 9 6814
[36] Ding S J, Li C, Zhang M Y, Zhang C C, Hu H T, Zou Y, Tang X B and Liu W P 2025 J. Alloys Compd. 1014 178571
[37] Li R Y, Liu Y F, Yuan C X, Leniec Grzegorz, Miao L J, Sun P, Liu Z H, Luo Z H, Dong R and Jiang J 2021 Adv. Opt. Mater. 9 2100388
[38] Liu S B, Wang G L, Xu L Y, Jia H X, Sun X K and Yuan H L 2023 Ceram. Int. 49 33401
[39] Tanabe Y and Sugano S 1954 J. Phys. Soc. Jpn. 9 766
[40] Yang Y, Lu Z Z, Fan H, Chen M H, Shen L W, Zhang X G, Pang Q, Chen J H, Chen P C and Zhou L Y 2023 Inorg. Chem. 62 3601
[41] Zhang Q Q, Liu D J, Dang P P, Lian H Z, Li G G and Lin J 2021 Laser Photon. Rev. 16 2100459
[42] Zhang Y, Miao S H, Liang Y J, Liang C, Chen D X, Shan X H, Sun K N and Wang X J 2022 Light Sci. Appl. 11 136
[1] Ab initio prediction of ground-state magnetic ordering and high-pressure magnetic phase transition of uranium mononitride
Jing-Jing Zheng(郑晶晶), Yuxi Chen(陈禹西), Chengxiang Zhao(赵承祥), Junfeng Zhang(张均锋), Ping Zhang(张平), Bao-Tian Wang(王保田), and Jiang-Jiang Ma(马江将). Chin. Phys. B, 2025, 34(8): 087101.
[2] Anomalous ultrafast thermalization of photoexcited carriers in two-dimensional materials induced by orbital coupling
Zhuoqun Wen(文卓群), Haiyu Zhu(诸海渝), Wen-Hao Liu(刘文浩), Zhi Wang(王峙), Wen Xiong(熊稳), and Xingzhan Wei(魏兴战). Chin. Phys. B, 2025, 34(7): 077103.
[3] Unveiling the thermal transport mechanisms in novel carbon-based graphene-like materials using machine-learning potential
Yao-Yuan Zhang(章耀元), Meng-Qiu Long(龙孟秋), Sai-Jie Cheng(程赛杰), and Wu-Xing Zhou(周五星). Chin. Phys. B, 2025, 34(6): 067101.
[4] High-order harmonic generation of methane in an elliptically polarized field
Shu-Shan Zhou(周书山), Yu-Long Li(李玉龙), Zhi-Xue Zhao(赵志学), Man Xing(幸满), Nan Xu(许楠), Hao Wang(王浩), Jun Wang(王俊), Xi Zhao(赵曦), and Mu-Hong Hu(胡木宏). Chin. Phys. B, 2025, 34(6): 063202.
[5] Modulating electronic properties of carbon nanotube via constructing one-dimensional vdW heterostructures
Wenqi Lv(吕雯祺), Weili Li(李伟立), Wei Ji(季威), and Yanning Zhang(张妍宁). Chin. Phys. B, 2025, 34(6): 067303.
[6] Photophysical property of fluorescent guanine analogs for selectively recognizing acetylated cytosine: A theoretical study
Xiaolin Chen(陈晓琳), Xixi Cui(崔习习), Yongkang Lyu(吕永康), Chenyang Zhang(张晨阳), Changzhe Zhang(张常哲), and Qingtian Meng(孟庆田). Chin. Phys. B, 2025, 34(5): 053102.
[7] Insights to unusual antiferromagnetic behavior and exchange coupling interactions in Mn23C6
Ze-Kun Yu(于泽坤), Chao Zhou(周超), Kuo Bao(包括), Zhao-Qing Wang(王兆卿), En-Xuan Li(李恩萱), Jin-Ming Zhu(朱金铭), Yuan Qin(秦源), Yu-Han Meng(孟钰涵), Pin-Wen Zhu(朱品文), Qiang Tao(陶强), and Tian Cui(崔田). Chin. Phys. B, 2025, 34(3): 037101.
[8] Exploring superconductivity in dynamically stable carbon-boron clathrates trapping molecular hydrogen
Akinwumi Akinpelu, Mangladeep Bhullar, Timothy A. Strobel, and Yansun Yao. Chin. Phys. B, 2025, 34(3): 036103.
[9] Half-metallic ferromagnetic Weyl fermions related to dynamic correlations in the zinc-blende compound VAs
Xianyong Ding(丁献勇), Haoran Wei(魏皓然), Ruixiang Zhu(朱瑞翔), Xiaoliang Xiao(肖晓亮), Xiaozhi Wu(吴小志), and Rui Wang(王锐). Chin. Phys. B, 2024, 33(9): 097103.
[10] Comparative study of nudged elastic band and molecular dynamics methods for diffusion kinetics in solid-state electrolytes
Aming Lin(林啊鸣), Jing Shi(石晶), Su-Huai Wei(魏苏淮), and Yi-Yang Sun(孙宜阳). Chin. Phys. B, 2024, 33(8): 086601.
[11] Rational molecular engineering towards efficient heterojunction solar cells based on organic molecular acceptors
Kaiyan Zhang(张凯彦), Peng Song(宋朋), Fengcai Ma(马凤才), and Yuanzuo Li(李源作). Chin. Phys. B, 2024, 33(6): 068402.
[12] Plasmon-induced nonlinear response on gold nanoclusters
Yuhui Song(宋玉慧), Yifei Cao(曹逸飞), Sichen Huang(黄思晨), Kaichao Li(李凯超), Ruhai Du(杜如海), Lei Yan(严蕾), Zhengkun Fu(付正坤), and Zhenglong Zhang(张正龙). Chin. Phys. B, 2024, 33(4): 044204.
[13] Local thermal conductivity of inhomogeneous nano-fluidic films:A density functional theory perspective
Zongli Sun(孙宗利), Yanshuang Kang(康艳霜), and Yanmei Kang(康艳梅). Chin. Phys. B, 2024, 33(4): 046503.
[14] Microscopic mechanism of plasmon-mediated photocatalytic H2 splitting on Ag-Au alloy chain
Yuhui Song(宋玉慧), Yirui Lu(芦一瑞), Axin Guo(郭阿鑫), Yifei Cao(曹逸飞), Jinping Li(李金萍), Zhengkun Fu(付正坤), Lei Yan(严蕾), and Zhenglong Zhang(张正龙). Chin. Phys. B, 2024, 33(3): 033101.
[15] Structure, electronic, and nonlinear optical properties of superalkaline M3O (M = Li, Na) doped cyclo[18]carbon
Xiao-Dong Liu(刘晓东), Qi-Liang Lu(卢其亮), and Qi-Quan Luo(罗其全). Chin. Phys. B, 2024, 33(2): 023601.
No Suggested Reading articles found!