| CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Wideband near-infrared emission from GaScO3:Cr3+ phosphors with a perovskite structure |
| Chong Li(李翀)1, Mengyu Zhang(张梦宇)1, Chuancheng Zhang(张传成)1, Wenzhi Su(宿文志)1, Yong Zou(邹勇)1, Shoujun Ding(丁守军)1,2,†, and Qingli Zhang(张庆礼)3 |
1 School of Microelectronics and Data Science, Anhui University of Technology, Maanshan 243002, China; 2 Anhui Provincial Joint Key Laboratory of Disciplines for Industrial Big Data Analysis and Intelligent Decision, Maanshan 243002, China; 2 Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Hefei 230031, China |
|
|
|
|
Abstract Cr$^{3+}$-activated phosphors have attracted significant attention for their tunable emission, spanning narrow-band red to broadband near-infrared (NIR) luminescence, depending on the crystal field environment. Here, we report the realization of wideband NIR emission in Cr$^{3+}$-doped GaScO$_{3}$ (GaScO$_{3}$:Cr$^{3+}$) phosphors with perovskite structure. The phosphors were synthesized by traditional solid-state reaction method. The first-principles calculations were conducted and the results demonstrate that the octahedral [GaO$_6$] sites exhibit relatively weak crystal field strength ($Dq/B\approx 2.2$), facilitating efficient spin-allowed transitions of Cr$^{3+}$ from the $^{4}$T$_{2}$ state to the $^{4}$A$_{2}$ state. The photoluminescence spectroscopy revealed an exceptionally broad NIR emission band from a range of 700 nm-1200 nm with full width at half maximum (FWHM) of 145 nm under 465-nm excitation. Overall, these results highlight the viability of GaScO$_{3}$:Cr$^{3+}$ as a highly promising material for wideband NIR applications.
|
Received: 21 March 2025
Revised: 28 April 2025
Accepted manuscript online: 07 May 2025
|
|
PACS:
|
75.20.En
|
(Metals and alloys)
|
| |
61.72.-y
|
(Defects and impurities in crystals; microstructure)
|
| |
76.30.Fc
|
(Iron group (3d) ions and impurities (Ti-Cu))
|
| |
78.55.-m
|
(Photoluminescence, properties and materials)
|
| |
71.15.Mb
|
(Density functional theory, local density approximation, gradient and other corrections)
|
|
| Fund: Project supported by the Natural Science Research Project of Anhui Provincial Education Department for Excellent Young Scholars (Grant No. 2024AH030007) and the National Natural Science Foundation of China (Grant No. 52202001). |
Corresponding Authors:
Shoujun Ding
E-mail: sjding@ahut.edu.cn
|
Cite this article:
Chong Li(李翀), Mengyu Zhang(张梦宇), Chuancheng Zhang(张传成), Wenzhi Su(宿文志), Yong Zou(邹勇), Shoujun Ding(丁守军), and Qingli Zhang(张庆礼) Wideband near-infrared emission from GaScO3:Cr3+ phosphors with a perovskite structure 2025 Chin. Phys. B 34 087502
|
[1] Yu D C, Ding Q Y, Shen T T, Qiu L, He F Q, Han X X, Song E H, Zhuang S L and Zhang D W 2024 Dalton Trans. 53 3702 [2] Ding Q Y, Wu J C, Yu D C, Han X X, Zhou Y Y, Shen T T, Ma Y F, Zhuang S L and Zhang D W 2024 J. Mater. Chem. C 12 2184 [3] Zhuo M P, Wang X D and Liao L S 2022 Small Sci. 2 2200029 [4] Lou L L, Zhao S, Yuan SW, Zhu D Y,Wu F G and Mu Z F 2022 Inorg. Chem. Front. 9 3522 [5] Ding S J, Ren H, Liu W P, He A F, Tang X B and Zhang Q L 2022 CrystEngComm. 24 818 [6] Huang H, Li R F, Jin S L, Li Z F, Huang P, Hong J Q, Du SW, ZhengW, Chen X Y and Chen D Q 2021 ACS Appl. Mater. Interfaces 13 34561 [7] Yu D C, Zhou Y S, Ma C S, Melman J H, Baroudi K M, LaCapra M and Riman R E 2019 ACS Appl. Electron. Mater. 1 2325 [8] Jin S Y and Xu X S 2024 Chin. Phys. B 33 036102 [9] Zhang Q Q, Liu D J, Wang Z N, Dang P P, Lian H Z, Li G G and Lin J 2023 Adv. Opt. Mater. 11 2202478 [10] Liang S S, Shang M M, Lian H Z, Li K, Zhang Y and Lin J 2016 J. Mater. Chem. C 4 6409 [11] He S, Zhang L L, Wu H, Wu H J, Pan G H, Hao Z D, Zhang X, Zhang L G, Zhang H and Zhang J H 2020 Adv. Opt. Mater. 8 1901684 [12] Botella P, Enrichi F, Vomiero A, Munoz-Santiuste J E, Garg A B, Arvind A, Manjon F J, Segura A and Errandonea D 2020 ACS Omega. 5 2148 [13] Saikia S, Ghosh A and Nag A 2023 Angew. Chem. Int. Ed. Engl. 62 e202307689 [14] Li J H, Zhang Q L, Sun G H, Gao J Y, Dou R Q, Wang X F and Ding S J 2024 Chin. Phys. B 33 117601 [15] Qiao J W, Zhou G J, Zhou Y Y, Zhang Q Y and Xia Z G 2019 Nat. Commun. 10 5267 [16] Zabiliute A, Butkute S, Zukauskas A, Vitta P and Kareiva A 2014 Appl. Opt. 53 907 [17] Zhu F M, Gao Y, Zhu B M, Huang L and Qiu Ji B 2024 Chem. Eng. J. 479 147568 [18] Liu G C, Molokeev Maxim S, Lei B F and Xia Z G 2020 J. Mater. Chem. C 8 9322 [19] Mao M Q, Zhou T L, Zeng H T, Wang L, Huang F, Tang X Y and Xie R J 2020 J. Mater. Chem. C 8 1981 [20] Wang C P, Wang X M, Zhou Y, Zhang S, Li C, Hu D F, Xu L and Jiao H 2019 ACS Appl. Electron. Mater. 1 1046 [21] Lin Q M, Wang Q, Liao M, Xiong M X, Feng X, Zhang X, Dong H F, Zhu D Y, Wu F G and Mu Z F 2021 ACS Appl. Mater. Interfaces 13 18274 [22] Zheng L W, Kuang J L, Shen J X, Wu H J, Wu H, Luo Y S, Pan G H, Hao Z D, Zhang L L and Zhang J H 2023 ACS Appl. Opt. Mater. 1 1150 [23] Fang M H, Huang P Y, Bao Z, Majewska Natalia, Lésniewski Tadeusz, Mahlik Sebastian, Grinberg Marek, Leniec Grzegorz, Kaczmarek Slawomir M, Yang C W, Lu K M, Sheu H S and Liu R S 2020 Chem. Mater. 32 2166 [24] Zhang C C, Ding S J, Wang M M, Ren H, Tang X B, Zou Y, Dou R Q and Liu W P 2023 Front. Optoelectron. 16 31 [25] Attah-Baah J M, Santos C, Silva R S, Oliveira J L, Jucá R F, Costa B F O, Matos R S, Escote M T, Silva R S, Rezende M V S and Ferreira N S 2024 Ceram. Int. 50 35714 [26] de Jesus Pereira A L, Sans J A, Vilaplana R, Ray S, Tadge P, Godoy A, Horta I M, da Silva-Sobrinho A S, Rodríguez-Hernández P, Muñoz A, Popescu C and Manjón F J 2024 Minerals 15 21 [27] Yao R C, Wan L Y, Li B S and Wang Y F 2024 Appl. Phys. Express 17 012004 [28] Pugh S F 2009 Philos. Mag. 45 823 [29] Born Max 2008 Math. Proc. Cambridge Philos. Soc. 36 160 [30] Dar Sajad A, Khandy Shakeel A, Islam I, Gupta D C, Sakalle U K, Srivastava V and Parrey K 2017 Chin. J. Phys. 55 1769 [31] Mubashir S, Butt Mehwish K, Yaseen M, Iqbal J, Iqbal M, Murtaza A and Laref A 2021 Optik 239 166694 [32] Gassoumi A and Saad H E M M 2016 Mater. Sci. Semicond. Process. 50 14 [33] Behram Rasul B, Iqbal M A, Alay-e-Abbas S M, Sajjad M, Yaseen M, ArshadMI and Murtaza G 2016 Mater. Sci. Semicond. Process. 41 297 [34] Zhong J Y, Zhuo Y, Du F, Zhang H S, Zhao W R, You S H and Brgoch Jakoah 2021 Adv. Opt. Mater. 10 2101800 [35] Makula P, Pacia M and Macyk W 2018 J. Phys. Chem. Lett. 9 6814 [36] Ding S J, Li C, Zhang M Y, Zhang C C, Hu H T, Zou Y, Tang X B and Liu W P 2025 J. Alloys Compd. 1014 178571 [37] Li R Y, Liu Y F, Yuan C X, Leniec Grzegorz, Miao L J, Sun P, Liu Z H, Luo Z H, Dong R and Jiang J 2021 Adv. Opt. Mater. 9 2100388 [38] Liu S B, Wang G L, Xu L Y, Jia H X, Sun X K and Yuan H L 2023 Ceram. Int. 49 33401 [39] Tanabe Y and Sugano S 1954 J. Phys. Soc. Jpn. 9 766 [40] Yang Y, Lu Z Z, Fan H, Chen M H, Shen L W, Zhang X G, Pang Q, Chen J H, Chen P C and Zhou L Y 2023 Inorg. Chem. 62 3601 [41] Zhang Q Q, Liu D J, Dang P P, Lian H Z, Li G G and Lin J 2021 Laser Photon. Rev. 16 2100459 [42] Zhang Y, Miao S H, Liang Y J, Liang C, Chen D X, Shan X H, Sun K N and Wang X J 2022 Light Sci. Appl. 11 136 |
| No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|