Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(8): 086105    DOI: 10.1088/1674-1056/add00c
Special Issue: SPECIAL TOPIC — Structures and properties of materials under high pressure
SPECIAL TOPIC — Structures and properties of materials under high pressure Prev   Next  

Synergistic improvements in mechanical and thermal performance of TiB2 solid-solution-based composites

Zhuang Li(李壮), Cun You(由存), Zhihui Li(李志慧), Xuepeng Li(李雪鹏), Guiqian Sun(孙贵乾), Xinglin Wang(王星淋), Qi Jia(贾琪), Qiang Tao(陶强)†, and Pinwen Zhu(朱品文)‡
Synergetic Extreme Condition High-Pressure Science Center, State Key Laboratory of High Pressure and Superhard Materials, College of Physics, Jilin University, Changchun 130012, China
Abstract  Continuously improving the mechanical properties of ultra-high-temperature ceramics (UHTCs) is a key requirement for their future applications. However, the mechanical properties of conventional UHTCs, HfB$_{2}$ and ZrB$_{2}$, remain unsatisfactory among transition metal light-element (TMLE) compounds. TiB$_{2}$ has superior mechanical properties compared to both HfB$_{2}$ and ZrB$_{2}$, but suffers from inherent brittleness and limited oxidation resistance. In this work, low-content solid-solution strengthening was used to fabricate dense samples of Ti$_{x}$(Hf/Zr)$_{1-x}$B$_{2}$ (THZ) under high pressure and high temperature (HPHT). Compared to pure TiB$_{2}$, Ti$_{0.94}$(Hf/Zr)$_{0.06}$B$_{2}$ exhibits a significant 38.8% increase in oxidation resistance temperature (950 $^\circ$C), while Ti$_{0.91}$(Hf/Zr)$_{0.09}$B$_{2}$ shows a notable 28% enhancement in fracture toughness (5.8 MPa$\cdot$m$^{1/2}$). The synergistic effect of a dual-atom solid-solution results in local internal stress and anomalous lattice contraction. This lattice contraction helps resist oxygen invasion, thereby elevating the oxidation resistance threshold. Additionally, the internal stress induces crack deflection within individual grains, enhancing toughness through energy dissipation. This work provides a new strategy for fabricating robust UHTCs within TMLE systems, demonstrating significant potential for future high-temperature applications.
Keywords:  high pressure and high temperature      solid-solution strengthening      fracture toughness      oxidation resistance  
Received:  26 February 2025      Revised:  08 April 2025      Accepted manuscript online:  24 April 2025
PACS:  61.50.-f (Structure of bulk crystals)  
  61.72.U- (Doping and impurity implantation)  
  62.20.-x (Mechanical properties of solids)  
  65.40.-b (Thermal properties of crystalline solids)  
Fund: The high-pressure experiments were conducted at the B1 station, Synergetic Extreme Condition User Facility (SECUF). The authors acknowledge funding support from the Program for the Development of Science and Technology of Jilin Province (Grant No. SKL202402004), the Jilin Province Major Science and Technology Program (Grant No. 20240211002GX), and the Open Research Fund of the Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education (Jilin Normal University, Grant No. 202405).
Corresponding Authors:  Qiang Tao, Pinwen Zhu     E-mail:  qiangtao@jlu.edu.cn;zhupw@jlu.edu.cn

Cite this article: 

Zhuang Li(李壮), Cun You(由存), Zhihui Li(李志慧), Xuepeng Li(李雪鹏), Guiqian Sun(孙贵乾), Xinglin Wang(王星淋), Qi Jia(贾琪), Qiang Tao(陶强), and Pinwen Zhu(朱品文) Synergistic improvements in mechanical and thermal performance of TiB2 solid-solution-based composites 2025 Chin. Phys. B 34 086105

[1] Zhao C X, Liu J N, Li B Q, Ren D, Chen X, Yu J and Zhang Q 2020 Adv. Funct. Mater. 30 2003619
[2] Que Z Y,Wei Z C, Li X Y, Zhang L, Dong Y H, Qin M L, Yang J J, Qu X H and Li J 2022 J. Mater. Sci. Technol. 126 203
[3] Dai F Z, Wen B, Sun Y J, Ren Y X, Xiang H M and Zhou Y C 2022 J. Mater. Sci. Technol. 123 26
[4] Fahrenholtz W G and Hilmas G E 2017 Scr. Mater. 129 94
[5] Sandeep K and Abhishek S 2023 J. Inst. Eng. India Ser. D 105 1601
[6] Gasch M J, Ellerby D T and Johnson S M 2005 Handbook of ceramic composites (Springer, Boston) pp. 224
[7] Gan Q, Liu H T, Zhang S, Wang F, Cheng J, Wang X, Dong S S, Tao Q, Chen Y L and Zhu P W 2021 ACS Appl. Mater. Interfaces 13 48
[8] Chen Y L, Yu G T, Chen W, Liu Y P, Li G D, Zhu P W, Tao Q, Li Q J, Liu J W and Shen X P 2017 J. Am. Chem. Soc. 139 12370
[9] Li Z, Zhao B, Wang L, Tao Q and Zhu P W 2022 J. Phys. Condens. Matter 35 074002
[10] Xu H Y, Ji W, Guo W M, Li Y L, Zou J, Wang W M and Fu Z Y 2022 Adv. Sci. 9 2104532
[11] Koh Y H, Lee S Y and Kim H E 2001 J. Am. Chem. Soc. 84 239
[12] Ma T, Zhu P W and Yu X H 2021 Chin. Phys. B 30 108103
[13] Silvestroni L, Sciti D and Bellosi A 2007 Adv. Energy Mater. 9 915
[14] Zhang H, Springer H, Aparicio Fernández R and Raabe D 2016 Acta Mater. 118 187
[15] Liu J G, Li Y, Cheng C G and Li W 2024 J. Aust. Ceram. Soc. 60 971
[16] Liu J X, Peng F, Ma G L, Liang W J, He R Q, Guan S X, Tang Y and Xiang X J 2023 Chin. Phys. B 32 098101
[17] Mondal S, Chakraborty S and Das S 2018 J. Mater. Eng. Perform. 27 6040
[18] Bakshi S R 2016 Technologies 4 30
[19] Chakraborty S, Debnath D, Mallick A and Das P K 2014 Int. J. Refract. Met. Hard Mater. 46 35
[20] Inagaki J I, Sakai Y, Uekawa N, Kojima T and Kakegawa K 2007 Mater. Res. Bull. 42 1019
[21] Gu X L, Liu C, Gao X X, Zhang K, Zheng W T and Chen C F 2023 Research 6 35
[22] Aronsson B 1960 Mod. Mater. 143 90
[23] Demirskyi D, Solodkyi I, Nishimura T and Vasylkiv O O 2019 J. Am. Ceram. 102 4259
[24] Akarsu M K and Akin I 2021 J. Alloys Compd. 884 161110
[25] Neuman E W, Thompson M, Fahrenholtz W G and Hilmas G E 2021 J. Eur. Ceram. Soc. 41 7434
[26] Li N N, Li H, Tang R L, Han D D, Zhao Y S, Gao W, Zhu P W and Wang X 2014 Chin. Phys. B 23 046105
[27] Kong Q Y, Huo S J, Chen L, Wang Y J, Ouyang J H and Zhou Y 2022 Ceram. Int. 48 17981
[28] Zhang X R, Zhang Z X, Wang W M, Shan J H, Che H W, Mu J B and Wang G S 2017 J. Am. Ceram. 100 3099
[29] Zuo Y, Liu Z B, Zhao W, Liu Y, Gai X M, Han D D, Wang X, Dong S S, Tao Q and Zhu P W 2023 Int. J. Refract. Met. Hard Mater. 110 105997
[30] Zhao F, Tao Q, You C, Ye M Y, Li L, Han Y, Dong S S, Wang X, Cui T and Zhu P W 2020 Mater. Chem. Phys. 251 123188
[31] Zdaniewski W A 1987 J. Am. Ceram. 70 793
[32] Cao P P, Huang H L, Jiang S H, Liu X J, Wang H, Wu Y and Lu Z P 2022 J. Mater. Sci. Technol. 122 243
[33] Huang H L, Sun Y, Cao P P, Wu Y, Liu X J, Jiang S H, Wang H and Lu Z P 2022 Scr. Mater. 211 114506
[34] Sagar K and Suresh P 1981 J. Am. Ceram. 64 533
[35] Shen X L, Wu K P, Sun H Y, Sang L W, Huang Z H, Imura M, Koide Y, Koizumi S and Liao M Y 2021 Diamond Relat. Mater. 116 108403
[36] Wang Y, Zhang G H, He X B and Yan B J 2019 Ceram. Int. 45 15772
[37] Ye S B, Zhu J P, Li P C, Li M L, Yan N and Wang H L 2023 Mater. Today Commun. 34 105228
[38] Liu B Q, Cui G D, Sun J, Qiao J J and Zhang L L 2024 Ceram. Int. 50 1874
[39] Chen F, Yan K, Zhu Y S and Hong J 2022 Ceram. Int. 48 28774
[40] Simonenko E P, Simonenko N P, Sevastyanov V G and Kuznetsov N T 2016 Russ. J. Inorg. Chem. 61 1483
[41] Zapata S E, Jayaseelan D D, Lin H T, Brown P and Lee W E 2013 J. Eur. Ceram. Soc. 33 1373
[42] Bhaumik S K, Diwakar C, Singh A K and Upadhyaya G S 2000 Mater. Sci. Eng. A 279 275
[1] Heterogeneous TiC-based composite ceramics with high toughness
Xiaoci Ma(马孝慈), Yufei Ge(葛雨非), Yutong Hou(侯语同), Keyu Shi(施柯羽), Jiaqi Zhang(张佳琪), Gaoping Yue(岳高平), Qiang Tao(陶强), and Pinwen Zhu(朱品文). Chin. Phys. B, 2025, 34(8): 086104.
[2] High thermoelectric performance of SnS under high pressure and high temperature
Yuqi Gao(高语崎), Xinglin Wang(王星淋), Cun You(由存), Dianzhen Wang(王殿振), Nan Gao(高楠), Qi Jia(贾琪), Zhihui Li(李志慧), Qiang Tao(陶强), and Pinwen Zhu(朱品文). Chin. Phys. B, 2025, 34(8): 087201.
[3] Measurement of the eutectic point of Fe-C alloy under 5 Gpa
Ting Zhang(张亭), Xiuyan Wei(魏秀艳), Zuguang Hu(胡祖光), Jianyun Yang(杨建云), Duanwei He(贺端威), Khalid Nabulsi, and Guodong (David) Zhan(詹国栋). Chin. Phys. B, 2025, 34(6): 066203.
[4] Effect of antioxidants on the efficiency of jet milling and the powder characteristics of Sm2Co17 permanent magnets
Da-Shuai Xu(许大帅), Lei Liu(刘雷), Jian-Hui Yuan(袁建辉), Bo Zhou(周波), Chuang-Hui Dong(董创辉), Feng-Qing Wang(王凤青), Yong Ding(丁勇), Ying-Li Sun(孙颖莉), and A-Ru Yan(闫阿儒). Chin. Phys. B, 2024, 33(9): 098103.
[5] Thermal conductivity of iron under the Earth's inner core pressure
Cui-E Hu(胡翠娥), Mu-Xin Jiao(焦亩鑫), Xue-Nan Yang(杨学楠), Zhao-Yi Zeng(曾召益), and Jun Chen(陈军). Chin. Phys. B, 2024, 33(10): 106501.
[6] High-pressure and high-temperature sintering of pure cubic silicon carbide: A study on stress-strain and densification
Jin-Xin Liu(刘金鑫), Fang Peng(彭放), Guo-Long Ma(马国龙), Wen-Jia Liang(梁文嘉), Rui-Qi He(何瑞琦), Shi-Xue Guan(管诗雪), Yue Tang(唐越), and Xiao-Jun Xiang(向晓君). Chin. Phys. B, 2023, 32(9): 098101.
[7] Prediction of superionic state in LiH2 at conditions enroute to nuclear fusion
Fude Li(李福德), Hao Wang(王豪), Jinlong Li(李津龙), and Huayun Geng(耿华运). Chin. Phys. B, 2023, 32(10): 106103.
[8] Synergistic influences of titanium, boron, and oxygen on large-size single-crystal diamond growth at high pressure and high temperature
Guang-Tong Zhou(周广通), Yu-Hu Mu(穆玉虎), Yuan-Wen Song(宋元文), Zhuang-Fei Zhang(张壮飞), Yue-Wen Zhang(张跃文), Wei-Xia Shen(沈维霞), Qian-Qian Wang(王倩倩), Biao Wan(万彪), Chao Fang(房超), Liang-Chao Chen(陈良超), Ya-Dong Li(李亚东), and Xiao-Peng Jia(贾晓鹏). Chin. Phys. B, 2022, 31(6): 068103.
[9] In-situ ultrasonic calibrations of pressure and temperature in a hinge-type double-stage cubic large volume press
Qingze Li(李青泽), Xiping Chen(陈喜平), Lei Xie(谢雷), Tiexin Han(韩铁鑫), Jiacheng Sun(孙嘉程), and Leiming Fang(房雷鸣). Chin. Phys. B, 2022, 31(6): 060702.
[10] Dependence of nitrogen vacancy color centers on nitrogen concentration in synthetic diamond
Yong Li(李勇), Xiaozhou Chen(陈孝洲), Maowu Ran(冉茂武), Yanchao She(佘彦超), Zhengguo Xiao(肖政国), Meihua Hu(胡美华), Ying Wang(王应), and Jun An(安军). Chin. Phys. B, 2022, 31(4): 046107.
[11] Synthesis and characterizations of boron and nitrogen co-doped high pressure and high temperature large single-crystal diamonds with increased mobility
Xin-Yuan Miao(苗辛原), Hong-An Ma(马红安), Zhuang-Fei Zhang(张壮飞), Liang-Chao Chen(陈良超), Li-Juan Zhou(周丽娟), Min-Si Li(李敏斯), and Xiao-Peng Jia(贾晓鹏). Chin. Phys. B, 2021, 30(6): 068102.
[12] Properties of B4C-TiB2 ceramics prepared by spark plasma sintering
Jingzhe Fan(范静哲), Weixia Shen(沈维霞), Zhuangfei Zhang(张壮飞, Chao Fang(房超), Yuewen Zhang(张跃文), Liangchao Chen(陈良超), Qianqian Wang(王倩倩), Biao Wan(万彪), and Xiaopeng Jia(贾晓鹏). Chin. Phys. B, 2021, 30(3): 038105.
[13] Utilizing of high-pressure high-temperature synthesis to enhance the thermoelectric properties of Zn0.98Al0.02O with excellent electrical properties
Qi Chen(陈启), Xinjian Li(李欣健), Yao Wang(王遥), Lijie Chang(常立杰), Jian Wang(王健), Yuewen Zhang(张跃文), Hongan Ma(马红安), and Xiaopeng Jia(贾晓鹏). Chin. Phys. B, 2021, 30(1): 016202.
[14] A double-layer heating method to generate high temperature in a two-stage multi-anvil apparatus
Bo Peng(彭博), Zili Kou(寇自力), Mengxi Zhao(赵梦溪), Mingli Jiang(姜明莉), Jiawei Zhang(张佳威), Yipeng Wang(王义鹏), Lu Zhang(张陆). Chin. Phys. B, 2020, 29(9): 090703.
[15] Crystallization and characteristics of {100}-oriented diamond with CH4N2S additive under high pressure and high temperature
Yong Li(李勇), Debing Tan(谭德斌), Qiang Wang(王强), Zhengguo Xiao(肖政国), Changhai Tian(田昌海), Lin Chen(陈琳). Chin. Phys. B, 2020, 29(9): 098103.
No Suggested Reading articles found!