Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(8): 086104    DOI: 10.1088/1674-1056/add5c8
Special Issue: SPECIAL TOPIC — Structures and properties of materials under high pressure
SPECIAL TOPIC — Structures and properties of materials under high pressure Prev   Next  

Heterogeneous TiC-based composite ceramics with high toughness

Xiaoci Ma(马孝慈)1,†, Yufei Ge(葛雨非)2,†,‡, Yutong Hou(侯语同)1, Keyu Shi(施柯羽)1, Jiaqi Zhang(张佳琪)1, Gaoping Yue(岳高平)1, Qiang Tao(陶强)1, and Pinwen Zhu(朱品文)1,§
1 Synergetic Extreme Condition High-Pressure Science Center, State Key Laboratory of High Pressure and Superhard Materials, College of Physics, Jilin University, Changchun 130012, China;
2 School of Materials Science and Engineering, Jilin Jianzhu University, Changchun 130018, China
Abstract  Electrically conductive carbide ceramics with high hardness and fracture toughness are promising for advanced applications. However, enhancing both electrical conductivity and fracture toughness simultaneous is challenging. This study reports the synthesis of (Ti$_{0.2}$W$_{0.2}$Ta$_{0.2}$Hf$_{0.2}$Mo$_{0.2}$)C-diamond composites with varying densities using high-pressure and high-temperature (HPHT) method. The carbides are uniformly dispersed in a titanium carbide matrix, forming conductive channels that reduce resistivity to 4.6$\times10^{-7}$ $\Omega $$\cdot$m. These composite materials exhibit metallic conductivity with a superconducting transition at 8.5 K. Superconducting behavior may result from d-p orbital hybridization and electron-phonon coupling in transition metal carbides, such as TaC, Mo$_{2}$C, and MoC. Optimizing intergranular bonding improves the fracture toughness without compromising hardness. The highest indentation toughness value is $10.1 \pm 0.4 $ MPa$\cdot$m$^{1/2}$, a 130% increase compare to pure TiC. Enhanced toughness arises from transgranular and intergranular fracture modes, multiple crack bridging, and large-angle crack deflection, which dissipate fracture energy and inhibit crack propagation. This study introduces a novel microstructure engineering strategy for carbide ceramics to achieve superior mechanical and electrical properties.
Keywords:  high pressure and high temperature      hardness      fracture toughness      superconductivity  
Received:  28 February 2025      Revised:  28 April 2025      Accepted manuscript online:  08 May 2025
PACS:  61.50.-f (Structure of bulk crystals)  
  61.72.U- (Doping and impurity implantation)  
  62.20.-x (Mechanical properties of solids)  
  61.66.Fn (Inorganic compounds)  
Fund: The authors acknowledge “B1 station, Synergetic Extreme Condition User Facility (SECUF)” for all of highpressure experiments. The authors acknowledge funding support from the Science and Technology Development Project of Jilin Province (Grant No. SKL202402004), the Program for the Development of Science and Technology of Jilin Province (Grant No. YDZJ202201ZYTS308), and the Open Research Fund of State Key Laboratory of Inorganic Synthesis and Preparative Chemistry (Jilin University, Grant Nos. 2022-16 and 2022-23).
Corresponding Authors:  Yufei Ge, Pinwen Zhu     E-mail:  geyufei@jlju.edu.cn;zhupw@jlu.edu.cn

Cite this article: 

Xiaoci Ma(马孝慈), Yufei Ge(葛雨非), Yutong Hou(侯语同), Keyu Shi(施柯羽), Jiaqi Zhang(张佳琪), Gaoping Yue(岳高平), Qiang Tao(陶强), and Pinwen Zhu(朱品文) Heterogeneous TiC-based composite ceramics with high toughness 2025 Chin. Phys. B 34 086104

[1] Wan J S, Chen Y, Huang C J, Huang Z J, Liang C, Deng X L and Cheng Q F 2024 Nature 634 1103
[2] Cho Y, Park J, Lee W G, Park J, Shin K, Song I, Lee G, Cho J, Kang S J, Kim Y, Baek M J and Lee D W 2023 Adv. Funct. Mater. 33 2213853
[3] Xu S, Wang T, Wang X G, Wu L, Fang Z Q, Ge F F, Meng X, Liao Q, Wei J C and Li B S 2023 Chin. Phys. B 32 068102
[4] Yue Y H, Gao Y F, Hu W T Xu B, Wang J, Zhang X J, Zhang Q, Wang Y B, Ge B H, Yang Z Y, Li Z H, Ying P, Liu X X, Yu D L,Wei B,Wang Z C, Zhou X F, Lin G and Tian Y J 2020 Nature 582 370
[5] Fan J Z, Shen W X, Zhang Z F, Fang C, Zhang Y W, Chen L C, Wang Q Q, Wan B and Jia X P 2021 Chin. Phys. B 30 038105
[6] Tong S, Ma Z C, Zhang W, Li Y C, Li C F, Zhao H W, Ren L Q and Yan C L 2024 Small 20 2406042
[7] Gao J, Bai Y L, Fan H L, Song G P, Zou X C, Zheng Y T and He X D 2023 J. Am. Ceram Soc. 106 4877
[8] Jiang WT, Lu H, Chen J H, Luo L, Liu X M, Wang H B and Song X Y 2023 ACS Appl. Mater. Interfaces 15 19604
[9] Ritchie R O 2011 Nat. Mater. 10 817
[10] Yung D L, Kollo L, Hussainova I and Zikin A 2013 Key Eng. Mater. 527 20
[11] Cheng L X, Xie Z P and Liu G W 2013 Ceram. Int. 39 5077
[12] Zhu Y B, Chai J L, Shen T L andWang Z G 2021 Metall. Mater. Trans. A 52 767
[13] Zhao H Z, You Z S, Tao N R and Lu L 2022 Acta Mater. 228 117748
[14] Sun Y, Bai X F, Guo R F and Shen P 2025 J. Mater. Sci. Technol. 210 188
[15] Onodera A and Ohtdni A 1998 J. Appl. Phys. 51 2581
[16] Chaudhri M M 2020 Diam. Relat. Mater. 109 108076
[17] Sagar K G and Suresh P M 2018 AIP Conf. Proc. 2039 020073
[18] Shen X L, Wu K P, Sun H Y, Sang L W, Huang Z H, Imura M, Koide Y, Koizumi S and Liao M Y 2021 Diam. Relat. Mater. 116 108403
[19] Pharr G M and Oliver W C 1992 J. Mater. Res. 7 1564
[20] Gibmeier J and Scholtes B 2008 Mater. Sci. For. 571–572 83
[21] Liu J, Zhan G D, Wang Q, Yan X Z, Liu F M, Wang P, Lei L, Peng F, Kou Z L and He D W 2018 Appl. Phys. Lett. 112 061901
[22] Cui S W, Ge Y F, Ma S L, Zhang X Q Lian M, Wei X M, Li W, You C, Tao Q, Cui T and Zhu P W 2025 J. Eur. Ceram. Soc. 45 116953
[23] Wang C C and Song L L 2019 Chin. Phys. B 28 066201
[24] Tan C L, Ziu J, Wang D, Ma W Y and Zhou K S 2022 Compos. Part B-Eng. 236 109820
[25] Yuan X H, Chen G W, Cheng Y, Zhu S C, Liu F Y, Ke Y J, Hu K, Pan Y, Wang M S, Liu Z D, Tang H and Liu B B 2025 Sci. Bull. 70 1257
[26] Hu J L, Liu X, Hu C Y and Guo W M 2013 China Ceram. 49 1 (in Chinese)
[27] Lian M,Wang F, Rong K X, Ma X C, Liu H T, Gai X M, Ge Y F, Dong S S, Tao Q and Zhu P W 2024 Int. J. Refract. Met. H. 118 106490
[28] Lai S L, Zang J H, ShenWX, Huang G F, Chao F, Zhang YW, Chen L C, Wang Q Q, Wan B, Jia X P and Zhang Z F 2023 J. Eur. Ceram. Soc. 43 3090
[29] Wang H, Zhao Q Y, Xin S W, Zhao Y Q, Zhou W and Zeng W D 2021 Mater. Sci. Eng. A 821 141626
[30] Qiu K L, Hou J P, Chen S, Li X, Yue Y H, Xu B, Hu Q, Liu L M, Yang Z Y, Nie A, Gao Y F, Jin T Y,Wang J, Li Y H,Wang Y B, Tian Y J and Guo L 2023 Nat. Mater. 22 1317
[31] Xu K, Fang T, Zhao L F, Cui H C and Lu F G 2020 Acta Metall. Sin. 33 425
[32] Williams W S 1999 Int. J. Refract. Met. H. 17 21
[33] Liu J X, Kan Y M and Zhang G L 2010 J. Am. Ceram. Soc. 93 980
[34] Silvestroni L, Pienti L, Guicciardi S and Sciti D 2015 Comp. Part B 72 10
[35] Liang H, He R Q, Liu L, Zhang W and Fang L M 2023 Ceram. Int. 49 7341
[36] Yu X L, Zhou X K, Wu B Z, Shi B C, Mi Y W, Yu Z X Jin Z H, Zhao Z N, He B Y, Chen H, Zheng Y F and Ge L 2024 Ceram. Int. 50 40216
[37] Karki A B, Xiong Y M and Haldolaarachchige N, Stadler S, Vekhter I, Adams P W, Young D P, Phelan W A and Chan J Y 2011 Phys. Rev. B 83 144525
[38] Arima K, Matano K, Harada S Bao G Z, Inada Y and Zheng G Q 2013 J. Phys. Conf. Ser. 449 012034
[39] Noffsinger J, Giustino F, Louie S G and Cohen M L 2008 Phys. Rev. B 77 180507
[40] Ge Y F, Song H, Bao K, Ma S L, Li L, Tao Q, Zhu P W, Liu B, Duan D F and Cui T 2021 J. Alloy Compd. 881 160631
[41] Kavitha M, Sudha Priyanga G and Rajeswarapalanichamy R and Iyakutti K 2016 Mater. Chem. Phys. 169 71
[42] Wang JW, Zhang Z G, Liang H and Chen H H 2021 Chin. J. High Pre. Phys. 35 021101
[1] Strain tuning of charge density wave and Mott-insulating states in monolayer VTe2
Wenqian Tu(涂文倩), Run Lv(吕润), Dingfu Shao(邵定夫), Yuping Sun(孙玉平), and Wenjian Lu(鲁文建). Chin. Phys. B, 2025, 34(9): 097103.
[2] Pressure-stabilized Li2K electride with superconducting behavior
Xiao-Zhen Yan(颜小珍), Quan-Xian Wu(邬泉县), Lei-Lei Zhang(张雷雷), and Yang-Mei Chen(陈杨梅). Chin. Phys. B, 2025, 34(9): 097405.
[3] Ground state of electron-doped t-t0-J model on cylinders: An investigation of finite size and boundary condition effects
Yang Shen(沈阳), Xiangjian Qian(钱湘坚), and Mingpu Qin(秦明普). Chin. Phys. B, 2025, 34(8): 087105.
[4] A novel metastable structure and superconductivity of hydrogen-rich compound CdH6 under pressure
Yan Yan(闫岩), Chengao Jiang(蒋成澳), Wen Gao(高稳), Rui Chen(陈蕊), Xiaodong Yang(杨晓东), Runru Liu(刘润茹), Lihua Yang(杨丽华), and Lili Wang(王丽丽). Chin. Phys. B, 2025, 34(8): 086201.
[5] Synergistic improvements in mechanical and thermal performance of TiB2 solid-solution-based composites
Zhuang Li(李壮), Cun You(由存), Zhihui Li(李志慧), Xuepeng Li(李雪鹏), Guiqian Sun(孙贵乾), Xinglin Wang(王星淋), Qi Jia(贾琪), Qiang Tao(陶强), and Pinwen Zhu(朱品文). Chin. Phys. B, 2025, 34(8): 086105.
[6] High thermoelectric performance of SnS under high pressure and high temperature
Yuqi Gao(高语崎), Xinglin Wang(王星淋), Cun You(由存), Dianzhen Wang(王殿振), Nan Gao(高楠), Qi Jia(贾琪), Zhihui Li(李志慧), Qiang Tao(陶强), and Pinwen Zhu(朱品文). Chin. Phys. B, 2025, 34(8): 087201.
[7] Superconductivity in YbN4H12 under low pressures
Xiang Wang(汪翔), Chenlong Xie(谢晨龙), Haohao Hong(洪浩豪), Yanliang Wei(魏衍亮), Zhao Liu(刘召), and Tian Cui(崔田). Chin. Phys. B, 2025, 34(8): 087401.
[8] High-pressure studies on quasi-one-dimensional systems
Wenhui Liu(刘雯慧), Jiajia Feng(冯嘉嘉), Wei Zhou(周苇), Sheng Li(李升), and Zhixiang Shi(施智祥). Chin. Phys. B, 2025, 34(8): 088104.
[9] Competing phases and suppression of superconductivity in hole-doped Hubbard model on honeycomb lattice
Hao Zhang(张浩), Shaojun Dong(董少钧), and Lixin He(何力新). Chin. Phys. B, 2025, 34(7): 077102.
[10] Momentum-dependent anisotropy of the charge density wave gap in quasi-1D ZrTe3-xSex (x = 0.015)
Renjie Zhang(张任杰), Yudong Hu(胡裕栋), Yiwei Cheng(程以伟), Yigui Zhong(钟益桂), Xuezhi Chen(陈学智), Junqin Li(李俊琴), Kozo Okazaki, Yaobo Huang(黄耀波), Tian Shang(商恬), Shifeng Jin(金士锋), Baiqing Lv(吕佰晴), and Hong Ding(丁洪). Chin. Phys. B, 2025, 34(7): 077106.
[11] Strongly tunable Ising superconductivity in van der Waals NbSe2-xTex nanosheets
Jingyuan Qu(曲静远), Guojing Hu(胡国静), Cuili Xiang(向翠丽), Hui Guo(郭辉), Senhao Lv(吕森浩), Yechao Han(韩烨超), Guoyu Xian(冼国裕), Qi Qi(齐琦), Zhen Zhao(赵振), Ke Zhu(祝轲), Xiao Lin(林晓), Lihong Bao(鲍丽宏), Yongjin Zou(邹勇进), Lixian Sun(孙立贤), Haitao Yang(杨海涛), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2025, 34(6): 067401.
[12] Measurement of the eutectic point of Fe-C alloy under 5 Gpa
Ting Zhang(张亭), Xiuyan Wei(魏秀艳), Zuguang Hu(胡祖光), Jianyun Yang(杨建云), Duanwei He(贺端威), Khalid Nabulsi, and Guodong (David) Zhan(詹国栋). Chin. Phys. B, 2025, 34(6): 066203.
[13] Pressure-induced superconductivity in Bi-doped BaFe2(As1-xBix)2 single crystals
Chang Su(苏畅), Wuhao Chen(陈吴昊), Wenjing Cheng(程文静), Jiabin Si(司佳斌), Qunfei Zheng(郑群飞), Jinlong Zhu(朱金龙), Lingyi Xing(邢令义), and Ying Liu(刘影). Chin. Phys. B, 2025, 34(6): 067403.
[14] Anisotropic two-band α-model and its application to layered chalcogenide superconductor NbSe2
Jiang-Ning Zhang(张江宁), Guo Wang(王果), Tian-Yi Han(韩天意), and Hai Huang(黄海). Chin. Phys. B, 2025, 34(5): 057401.
[15] Regulation of superconductivity in Nb thin films induced by interstitial oxygen atoms
Yuchuan Liu(刘钰川), Ming Yang(杨明), Yun Fan(范云), Zulei Xu(徐祖磊), Yu Wu(吴禹), Yixin Liu(刘以鑫), Wei Peng(彭炜), Gang Mu(牟刚), and Zhi-Rong Lin(林志荣). Chin. Phys. B, 2025, 34(4): 047401.
No Suggested Reading articles found!