|
Special Issue:
SPECIAL TOPIC — Structures and properties of materials under high pressure
|
| SPECIAL TOPIC — Structures and properties of materials under high pressure |
Prev
Next
|
|
|
Heterogeneous TiC-based composite ceramics with high toughness |
| Xiaoci Ma(马孝慈)1,†, Yufei Ge(葛雨非)2,†,‡, Yutong Hou(侯语同)1, Keyu Shi(施柯羽)1, Jiaqi Zhang(张佳琪)1, Gaoping Yue(岳高平)1, Qiang Tao(陶强)1, and Pinwen Zhu(朱品文)1,§ |
1 Synergetic Extreme Condition High-Pressure Science Center, State Key Laboratory of High Pressure and Superhard Materials, College of Physics, Jilin University, Changchun 130012, China; 2 School of Materials Science and Engineering, Jilin Jianzhu University, Changchun 130018, China |
|
|
|
|
Abstract Electrically conductive carbide ceramics with high hardness and fracture toughness are promising for advanced applications. However, enhancing both electrical conductivity and fracture toughness simultaneous is challenging. This study reports the synthesis of (Ti$_{0.2}$W$_{0.2}$Ta$_{0.2}$Hf$_{0.2}$Mo$_{0.2}$)C-diamond composites with varying densities using high-pressure and high-temperature (HPHT) method. The carbides are uniformly dispersed in a titanium carbide matrix, forming conductive channels that reduce resistivity to 4.6$\times10^{-7}$ $\Omega $$\cdot$m. These composite materials exhibit metallic conductivity with a superconducting transition at 8.5 K. Superconducting behavior may result from d-p orbital hybridization and electron-phonon coupling in transition metal carbides, such as TaC, Mo$_{2}$C, and MoC. Optimizing intergranular bonding improves the fracture toughness without compromising hardness. The highest indentation toughness value is $10.1 \pm 0.4 $ MPa$\cdot$m$^{1/2}$, a 130% increase compare to pure TiC. Enhanced toughness arises from transgranular and intergranular fracture modes, multiple crack bridging, and large-angle crack deflection, which dissipate fracture energy and inhibit crack propagation. This study introduces a novel microstructure engineering strategy for carbide ceramics to achieve superior mechanical and electrical properties.
|
Received: 28 February 2025
Revised: 28 April 2025
Accepted manuscript online: 08 May 2025
|
|
PACS:
|
61.50.-f
|
(Structure of bulk crystals)
|
| |
61.72.U-
|
(Doping and impurity implantation)
|
| |
62.20.-x
|
(Mechanical properties of solids)
|
| |
61.66.Fn
|
(Inorganic compounds)
|
|
| Fund: The authors acknowledge “B1 station, Synergetic Extreme Condition User Facility (SECUF)” for all of highpressure experiments. The authors acknowledge funding support from the Science and Technology Development Project of Jilin Province (Grant No. SKL202402004), the Program for the Development of Science and Technology of Jilin Province (Grant No. YDZJ202201ZYTS308), and the Open Research Fund of State Key Laboratory of Inorganic Synthesis and Preparative Chemistry (Jilin University, Grant Nos. 2022-16 and 2022-23). |
Corresponding Authors:
Yufei Ge, Pinwen Zhu
E-mail: geyufei@jlju.edu.cn;zhupw@jlu.edu.cn
|
Cite this article:
Xiaoci Ma(马孝慈), Yufei Ge(葛雨非), Yutong Hou(侯语同), Keyu Shi(施柯羽), Jiaqi Zhang(张佳琪), Gaoping Yue(岳高平), Qiang Tao(陶强), and Pinwen Zhu(朱品文) Heterogeneous TiC-based composite ceramics with high toughness 2025 Chin. Phys. B 34 086104
|
[1] Wan J S, Chen Y, Huang C J, Huang Z J, Liang C, Deng X L and Cheng Q F 2024 Nature 634 1103 [2] Cho Y, Park J, Lee W G, Park J, Shin K, Song I, Lee G, Cho J, Kang S J, Kim Y, Baek M J and Lee D W 2023 Adv. Funct. Mater. 33 2213853 [3] Xu S, Wang T, Wang X G, Wu L, Fang Z Q, Ge F F, Meng X, Liao Q, Wei J C and Li B S 2023 Chin. Phys. B 32 068102 [4] Yue Y H, Gao Y F, Hu W T Xu B, Wang J, Zhang X J, Zhang Q, Wang Y B, Ge B H, Yang Z Y, Li Z H, Ying P, Liu X X, Yu D L,Wei B,Wang Z C, Zhou X F, Lin G and Tian Y J 2020 Nature 582 370 [5] Fan J Z, Shen W X, Zhang Z F, Fang C, Zhang Y W, Chen L C, Wang Q Q, Wan B and Jia X P 2021 Chin. Phys. B 30 038105 [6] Tong S, Ma Z C, Zhang W, Li Y C, Li C F, Zhao H W, Ren L Q and Yan C L 2024 Small 20 2406042 [7] Gao J, Bai Y L, Fan H L, Song G P, Zou X C, Zheng Y T and He X D 2023 J. Am. Ceram Soc. 106 4877 [8] Jiang WT, Lu H, Chen J H, Luo L, Liu X M, Wang H B and Song X Y 2023 ACS Appl. Mater. Interfaces 15 19604 [9] Ritchie R O 2011 Nat. Mater. 10 817 [10] Yung D L, Kollo L, Hussainova I and Zikin A 2013 Key Eng. Mater. 527 20 [11] Cheng L X, Xie Z P and Liu G W 2013 Ceram. Int. 39 5077 [12] Zhu Y B, Chai J L, Shen T L andWang Z G 2021 Metall. Mater. Trans. A 52 767 [13] Zhao H Z, You Z S, Tao N R and Lu L 2022 Acta Mater. 228 117748 [14] Sun Y, Bai X F, Guo R F and Shen P 2025 J. Mater. Sci. Technol. 210 188 [15] Onodera A and Ohtdni A 1998 J. Appl. Phys. 51 2581 [16] Chaudhri M M 2020 Diam. Relat. Mater. 109 108076 [17] Sagar K G and Suresh P M 2018 AIP Conf. Proc. 2039 020073 [18] Shen X L, Wu K P, Sun H Y, Sang L W, Huang Z H, Imura M, Koide Y, Koizumi S and Liao M Y 2021 Diam. Relat. Mater. 116 108403 [19] Pharr G M and Oliver W C 1992 J. Mater. Res. 7 1564 [20] Gibmeier J and Scholtes B 2008 Mater. Sci. For. 571–572 83 [21] Liu J, Zhan G D, Wang Q, Yan X Z, Liu F M, Wang P, Lei L, Peng F, Kou Z L and He D W 2018 Appl. Phys. Lett. 112 061901 [22] Cui S W, Ge Y F, Ma S L, Zhang X Q Lian M, Wei X M, Li W, You C, Tao Q, Cui T and Zhu P W 2025 J. Eur. Ceram. Soc. 45 116953 [23] Wang C C and Song L L 2019 Chin. Phys. B 28 066201 [24] Tan C L, Ziu J, Wang D, Ma W Y and Zhou K S 2022 Compos. Part B-Eng. 236 109820 [25] Yuan X H, Chen G W, Cheng Y, Zhu S C, Liu F Y, Ke Y J, Hu K, Pan Y, Wang M S, Liu Z D, Tang H and Liu B B 2025 Sci. Bull. 70 1257 [26] Hu J L, Liu X, Hu C Y and Guo W M 2013 China Ceram. 49 1 (in Chinese) [27] Lian M,Wang F, Rong K X, Ma X C, Liu H T, Gai X M, Ge Y F, Dong S S, Tao Q and Zhu P W 2024 Int. J. Refract. Met. H. 118 106490 [28] Lai S L, Zang J H, ShenWX, Huang G F, Chao F, Zhang YW, Chen L C, Wang Q Q, Wan B, Jia X P and Zhang Z F 2023 J. Eur. Ceram. Soc. 43 3090 [29] Wang H, Zhao Q Y, Xin S W, Zhao Y Q, Zhou W and Zeng W D 2021 Mater. Sci. Eng. A 821 141626 [30] Qiu K L, Hou J P, Chen S, Li X, Yue Y H, Xu B, Hu Q, Liu L M, Yang Z Y, Nie A, Gao Y F, Jin T Y,Wang J, Li Y H,Wang Y B, Tian Y J and Guo L 2023 Nat. Mater. 22 1317 [31] Xu K, Fang T, Zhao L F, Cui H C and Lu F G 2020 Acta Metall. Sin. 33 425 [32] Williams W S 1999 Int. J. Refract. Met. H. 17 21 [33] Liu J X, Kan Y M and Zhang G L 2010 J. Am. Ceram. Soc. 93 980 [34] Silvestroni L, Pienti L, Guicciardi S and Sciti D 2015 Comp. Part B 72 10 [35] Liang H, He R Q, Liu L, Zhang W and Fang L M 2023 Ceram. Int. 49 7341 [36] Yu X L, Zhou X K, Wu B Z, Shi B C, Mi Y W, Yu Z X Jin Z H, Zhao Z N, He B Y, Chen H, Zheng Y F and Ge L 2024 Ceram. Int. 50 40216 [37] Karki A B, Xiong Y M and Haldolaarachchige N, Stadler S, Vekhter I, Adams P W, Young D P, Phelan W A and Chan J Y 2011 Phys. Rev. B 83 144525 [38] Arima K, Matano K, Harada S Bao G Z, Inada Y and Zheng G Q 2013 J. Phys. Conf. Ser. 449 012034 [39] Noffsinger J, Giustino F, Louie S G and Cohen M L 2008 Phys. Rev. B 77 180507 [40] Ge Y F, Song H, Bao K, Ma S L, Li L, Tao Q, Zhu P W, Liu B, Duan D F and Cui T 2021 J. Alloy Compd. 881 160631 [41] Kavitha M, Sudha Priyanga G and Rajeswarapalanichamy R and Iyakutti K 2016 Mater. Chem. Phys. 169 71 [42] Wang JW, Zhang Z G, Liang H and Chen H H 2021 Chin. J. High Pre. Phys. 35 021101 |
| No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|