Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(8): 086103    DOI: 10.1088/1674-1056/add8ff
Special Issue: SPECIAL TOPIC — Structures and properties of materials under high pressure
SPECIAL TOPIC — Structures and properties of materials under high pressure Prev   Next  

Low-temperature photoluminescence study of optical centers in HPHT-diamonds

Liangchao Chen(陈良超)1, Xinyuan Miao(苗辛原)2,†, Zhuangfei Zhang(张壮飞)1, Biao Wan(万彪)1, Yuewen Zhang(张跃文)1, Qianqian Wang(王倩倩)1, Longsuo Guo(郭龙锁)3,‡, and Chao Fang(房超)1,§
1 Key Laboratory of Material Physics of Ministry of Education, School of Physics, Zhengzhou University, Zhengzhou 450052, China;
2 College of Physics, Guangxi University of Science and Technology, Liuzhou 545006, China;
3 Advanced Materials Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
Abstract  The properties and creation of optical centers in diamond are essential for applications in quantum technology. Here, we study the photoluminescence (PL) spectroscopy behavior at low temperatures of diamond subjected to electron irradiation and annealing heat treatment. Through temperature variation testing, it was found that the NV$^{-}$ center intensity of diamond with a nitrogen content of 150 ppm before treatment is insensitive to the experimental temperature, but significantly increases with decreasing temperature after treatment, showing sensitivity to temperature. In addition, the H3 center also shows an increasing trend with decreasing temperature. The results of annealing diamond with a nitrogen content of 730 ppm showed that even at a low temperature of 93 K, no NV$^{-}$ centers were detected, but there were a large number of Ni-N related centers, especially NE8 centers. Our findings can promote a deeper understanding of the behavioral characteristics of HPHT-diamond optical centers in low-temperature environments.
Keywords:  high temperature and high pressure      diamond      optical centers      photoluminescence  
Received:  23 January 2025      Revised:  18 April 2025      Accepted manuscript online:  15 May 2025
PACS:  61.72.jn (Color centers)  
  61.72.S- (Impurities in crystals)  
  67.80.dj (Defects, impurities, and diffusion)  
  74.25.Gz (Optical properties)  
Fund: This project was supported by the National Natural Science Foundation of China (Grant Nos. 12274373, 12274372, and 12204259), the Natural Science Foundation of Henan Province (Grant No. 242300421155), the Key Research Projects of Higher Education Institutions in Henan Province (Grant No. 25A140008), the Science and Technology Base and Talent Project of Guangxi, China (Grant No. AD21220154), and the Central Plains Science and Technology Innovation Youth Top Notch Talents.
Corresponding Authors:  Xinyuan Miao, Longsuo Guo, Chao Fang     E-mail:  miaoxy@gxust.edu.cn;guols@sdas.org;fangchao1989@zzu.edu.cn

Cite this article: 

Liangchao Chen(陈良超), Xinyuan Miao(苗辛原), Zhuangfei Zhang(张壮飞), Biao Wan(万彪), Yuewen Zhang(张跃文), Qianqian Wang(王倩倩), Longsuo Guo(郭龙锁), and Chao Fang(房超) Low-temperature photoluminescence study of optical centers in HPHT-diamonds 2025 Chin. Phys. B 34 086103

[1] Guo Z J,Wang L,Wang K Y, Ren C H, Guo R A, Zhang Y F, TianY M and Wang H X 2021 Appl. Phys. Lett. 118 192104
[2] Chu D L, Ma H A, Zhang Z F, Peng F and Jia X P 2022 Int. J. Refract. Met. Hard Mater. 106 105876
[3] Ohashi K, Rosskopf T, Watanabe H, Loretz M, Tao Y, Hauert R, Tomizawa S, Ishikawa T, Ishi-Hayase J, Shikata S, Degen C L and Itoh K M 2013 Nano Lett. 13 4733
[4] Su L X, ZhaoC X, Lou Q, Niu C Y, Fang C, Li Z, Shen C L, Zang J H, Jia X P and Shan C X 2018 Carbon 130 384
[5] Laidlaw F, Diggle P L, Breeze B G, Dale M W, Fisher D and Beanland R 2021 Diamond Relat. Mater. 117 108465
[6] Vins V G, Yelisseyev A P, Terentyev S A and Nosukhin S A 2021 Diamond Relat. Mater. 118 108511
[7] Watanabe A, Nishikawa T, Kato H, Fujie M, Fujiwara M, Makino T, Yamasaki S, Herbschleb E D and Mizuochi N 2021 Carbon 178 294
[8] Dong B, Shi C K, Xu Z W, Wang K Y, Luo H H, Sun F W, Wang P F, Wu E, Zhang K, Liu J Y, Song Y and Fan Y X 2021 Diamond Relat. Mater. 116 108389
[9] Osipov V Y, Shakhov F M, BogdanovK V, Takai K, Hayashi T, Treussart F, Baldycheva A, Hogan B T and Jentgens C 2020 Nanoscale Res. Lett. 15 209
[10] Hsu J H, Su W D, Yang K L, Tzeng Y K and Chang H C 2011 Appl. Phys. Lett. 98 193116
[11] Zhu Y H, Wan B, Shen W X, Zhang Z F, Fang C, Wang Q Q, Chen L C, Zhang Y W and Jia X P 2023 Appl. Phys. Lett. 122 133903
[12] Xu Y, Zheng L, Zhang Y K, Zhang Z F, Wang Q Q, Zhang Y W, Chen L C, Fang C, Wan B and Gou H Y 2024 Matter Radiat. Extremes 9 037402
[13] Meng Y F, Yan C S, Lai J, Krasnicki S, Shu H, Yu T, Liang Q, Mao H K and Hemley R J 2008 Proc. Natl. Acad. Sci. USA. 105 17620
[14] Bhattacharyya P, Chen W, Huang X, et al. 2024 Nature 627 73
[15] Palyanov Y N, Borzdov Y M, Khokhryakov A F, Kupriyanov I N and Sokol A G 2010 Cryst. Growth Des. 10 3169
[16] Zhang X R, Liu K Y, Li F J, Liu X B, Duan S, Wang J N, Liu G Q, Pan X Y, Chen Zhang X P, Ma Y M and Chen C F 2023 Adv. Funct. Mater. 33 2309586
[17] Jia G F, Wang K Y, Zhang Y F, Guo R A, Xiao Z P, Wu Y Q and Tian Y M 2021 Vacuum 187 110107
[18] Steeds J W, Davis T J, Charles S J, Hayes J M and Butler J E 1999 Diamond Relat. Mater. 8 1847
[19] Guo R A, Wang K Y, Zhang Y F, Xiao Z P, Jia G Y, Wang H X, Wu Y Q and Tian Y M 2020 Appl. Phys. Lett. 117 172104
[20] Zhou G T, Mu Y H, Song Y W, Zhang Z F, Zhang Y W, Shen W X, Wang Q Q, Wan B, Fang C, Chen L C, Li Y D and Jia X P 2022 Chin. Phys. B 31 068103
[21] Chen L C, Miao X Y, Ma H A, Guo L S, Wang Z K, Yang Z Q, Fang C and Jia X P 2018 CrystEngComm 20 7164
[22] Wang W H, Fang C, Chen L C, Zhang Z F, Zhang Y W, Wang Q Q, Wan B, Yang X, Ren W and Jia X P 2024 Diam. Relat. Mater. 142 110863
[23] Li Y, Jia X P, Feng Y. G, Fang C, Fan L J, Li Y D, Zeng X and Ma H A 2015 Chin. Phys. B 24 088104
[24] Nadolinny V A, Yelisseyev A P 1993 Diamond Relat. Mater. 3 17
[25] Yelisseyev A, Babich Y, Nadolinny V, Fisher D and Feigelson B 2002 Diamond Relat. Mater. 11 22
[26] Lawson S C and Kanda H 1993 Diamond Relat. Mater. 2 130
[27] Collins A T, Connor A, Ly C H, Shareef A and Spear P M 2005 J. Appl. Phys. 97 083517
[28] Rakhmanova M I, Komarovskikh A Y, Ragozin A L, Yuryeva O P and Nadolinny V A 2022 Diamond Relat. Mater. 126 109057
[29] Chen L C, Shen W X, Fang C, Zhang Y W, Mu P Y, Zhou G T, Wang Q Q, Zhang Z F and Jia X P 2020 Cryst. Growth Des. 20 3257
[30] Chen X D, Dong C H, Sun F W, Zou C L, Cui J M and Guo G C 2011 Appl. Phys. Lett. 99 161903
[31] Benabdesselam M, Petitfifils A, Wrobel F, Butler J E and Mady F 2008 J. Appl. Phys. 103 114908
[32] Varshni Y P 1967 Physica 34 149
[33] Lawson S C, Kanda H, Watanabe K, Kiflflawi I and Sato Y 1996 J. Appl. Phys. 79 4348
[34] Wang K Y, Guo R A and Wang H X 2020 Acta Phys. Sin. 69 127802 (in Chinese)
[1] Anisotropic displacement threshold energy and defect distribution in diamond: PKA energy and temperature effect
Ke Wu(吴可), Zeyi Du(杜泽依), Hongyang Liu(刘洪洋), Nanyun Bao(包南云), Chengke Xu(许成科), Hongrui Wang(王泓睿), Qunchao Tong(童群超), Bo Chen(陈博), Dongdong Kang(康冬冬), Guang Wang(王广), and Jiayu Dai(戴佳钰). Chin. Phys. B, 2025, 34(8): 087104.
[2] Structural evolution and bandgap modification of a robust mixed-valence compound Eu9MgS2B20O41 under pressure
Boyang Fu(符博洋), Wenfeng Zhou(周文风), Fuyang Liu(刘扶阳), Luhong Wang(王鲁红), Haozhe Liu(刘浩哲), Sheng-Ping Guo(郭胜平), and Weizhao Cai(蔡伟照). Chin. Phys. B, 2025, 34(8): 086102.
[3] Structure and properties of MgO melt at high pressure: A first-principles study
Min Wu(吴旻) and Zhongsen Sun(孙忠森). Chin. Phys. B, 2025, 34(8): 086301.
[4] High-sensitivity spectroscopic measurements under pulsed high magnetic field
Zheng Wang(王政), Yichun Pan(潘议淳), Guangran Yang(杨光冉), Wei Xie(谢微), and Weihang Zhou(周伟航). Chin. Phys. B, 2025, 34(7): 070701.
[5] Enhancement of thermal conductivity in diamond/Al composites through vacuum-pressure thermal diffusion sintering
Wenxia Zhang(张文霞), Weixia Shen(沈维霞), Chao Fang(房超), Ye Wang(王烨), Yuewen Zhang(张跃文), Liangchao Chen(陈良超), Qianqian Wang(王倩倩), Kenan Li(黎克楠), Biao Wan(万彪), and Zhuangfei Zhang(张壮飞). Chin. Phys. B, 2025, 34(7): 070703.
[6] Pressure-induced superconductivity in Bi-doped BaFe2(As1-xBix)2 single crystals
Chang Su(苏畅), Wuhao Chen(陈吴昊), Wenjing Cheng(程文静), Jiabin Si(司佳斌), Qunfei Zheng(郑群飞), Jinlong Zhu(朱金龙), Lingyi Xing(邢令义), and Ying Liu(刘影). Chin. Phys. B, 2025, 34(6): 067403.
[7] Ultrahigh concentration of NV- centers embedded in the CVD epi-diamond layer near the interface with an HPHT diamond substrate
Yuanjie Yang(杨元杰), Shengran Lin(林盛然), Jiaxin Zhao(赵嘉昕), Changfeng Weng(翁长风), Liren Lou(楼立人), Wei Zhu(祝巍), and Guanzhong Wang(王冠中). Chin. Phys. B, 2025, 34(5): 056102.
[8] Synthesis of two-dimensional diamond by phase transition from graphene at atmospheric pressure
Songyang Li(李松洋), Zhiguang Zhu(朱志光), Youzhi Zhang(张有志), Chengke Chen(陈成克), and Xiaojun Hu(胡晓君). Chin. Phys. B, 2025, 34(5): 058101.
[9] Quantitative determination of modal photon number density spectrum in arbitrary dielectric structures with a quantum emitter
Li-Heng Chen(陈立恒), Fengfeng Luo(罗凤凤), and Yonggui Gao(高勇贵). Chin. Phys. B, 2025, 34(4): 044204.
[10] Pressure-promoted ligand to metal energy transfer for emission enhancement of [Tb2(BDC)3(DMF)2(H2O)2]n metal-organic framework
Yunfeng Yang(杨云峰), Kaiyan Yuan(袁开岩), Binhao Yang(杨斌豪), Qing Yang(杨青), Yixuan Wang(王艺璇), and Xinyi Yang(杨新一)§. Chin. Phys. B, 2025, 34(3): 036101.
[11] Structural and transport properties of (Mg,Fe)SiO3 at high temperature and high pressure
Shu Huang(黄澍), Zhiyang Xiang(向志洋), Shi He(何适), Luhan Yin(尹路寒), Shihe Zhang(张时赫), Chen Chen(陈晨), Kaihua He(何开华), and Cheng Lu(卢成). Chin. Phys. B, 2025, 34(3): 036102.
[12] Generation of macroscopic entanglement in ensemble systems based on silicon vacancy centers
Jian-Zhuang Wu(武建壮), Ying Xi(奚滢), Bo-Ya Li(李博雅), Lian-E Lu(芦连娥), and Yong-Hong Ma(马永红). Chin. Phys. B, 2024, 33(9): 090308.
[13] Diamond-based electron emission: Structure, properties and mechanisms
Liang-Xue Gu(顾梁雪), Kai Yang(杨凯), Yan Teng(滕妍), Wei-Kang Zhao(赵伟康), Geng-You Zhao(赵耕右), Kang-Kang Fan(凡康康), Bo Feng(冯博), Rong Zhang(张荣), You-Dou Zheng(郑有炓), Jian-Dong Ye(叶建东), Shun-Ming Zhu(朱顺明), Kun Tang(汤琨), and Shu-Lin Gu(顾书林). Chin. Phys. B, 2024, 33(9): 098102.
[14] Micron-sized fiber diamond probe for quantum precision measurement of microwave magnetic field
Wen-Tao Lu(卢文韬), Sheng-Kai Xia(夏圣开), Ai-Qing Chen(陈爱庆), Kang-Hao He(何康浩), Zeng-Bo Xu(许增博), Yi-Han Chen(陈艺涵), Yang Wang(汪洋), Shi-Yu Ge(葛仕宇), Si-Han An(安思瀚), Jian-Fei Wu(吴建飞), Yi-Han Ma(马艺菡), and Guan-Xiang Du(杜关祥). Chin. Phys. B, 2024, 33(8): 080305.
[15] Synthesis and nitrogen content regulation of diamond in a high-pressure hydrogen-rich environment
Guofeng Huang(黄国锋), Liangchao Chen(陈良超), and Chao Fang(房超). Chin. Phys. B, 2024, 33(6): 068102.
No Suggested Reading articles found!