Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(1): 016401    DOI: 10.1088/1674-1056/abb3f1
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Improving robustness of complex networks by a new capacity allocation strategy

Jun Liu(刘军)†
Department of Information Science and Technology, Tianjin University of Finance and Economics, Tianjin 300222, China
Abstract  The robustness of infrastructure networks has attracted great attention in recent years. Scholars have studied the robustness of complex networks against cascading failures from different aspects. In this paper, a new capacity allocation strategy is proposed to reduce cascading failures and improve network robustness without changing the network structure. Compared with the typical strategy proposed in Motter-Lai (ML) model, the new strategy can reduce the scale of cascading failure. The new strategy applied in scale-free network is more efficient. In addition, to reasonably evaluate the two strategies, we introduce contribution rate of unit capacity to network robustness as evaluation index. Results show that our new strategy works well, and it is more advantageous in the rational utilization of capacity in scale-free networks. Furthermore, we were surprised to find that the efficient utilization of capacity costs declined as costs rose above a certain threshold, which indicates that it is not wise to restrain cascading failures by increasing capacity costs indefinitely.
Keywords:  capacity      cascading failure      complex network      robustness  
Received:  15 July 2020      Revised:  14 August 2020      Accepted manuscript online:  01 September 2020
PACS:  64.60.aq (Networks)  
  89.75.-k (Complex systems)  
Corresponding Authors:  Corresponding author. E-mail: liujun_8912@163.com   

Cite this article: 

Jun Liu(刘军) Improving robustness of complex networks by a new capacity allocation strategy 2021 Chin. Phys. B 30 016401

1 Peng P, Cheng S, Chen J, Liao M, Wu L, Liu X and Lu F 2018 J. Geograph. Sci. 28 881
2 Hou G Y, Jin C, Xu Z D, Yu P and Cao Y Y 2019 Chin. Phys. B 28 038901
3 Wang Y C and Zhang F P 2018 Nonlinear Dyn. 92 1
4 Kinney R, Crucitti P, Albert R and Latora V 2005 Eur. Phys. J. B 46 101
5 Chen D, Shi D D and Pan G J 2019 Acta Phys. Sin. 68 118901 (in Chinese)
6 Wang B, Zhang Z, Qi X and Liu L 2020 Journal of Network and Systems Management 28 21
7 Turau V and Weyer C 2019 Journal of Heuristics 25 837
8 Ma J and Ju Z 2019 Peer-to-Peer Netw. Appl. 12 1627
9 Wang Y and Zhang F 2018 Nonlinear Dyn. 92 1403
10 Jiang Y, Hu A and Huang J 2019 Cluster Comput. 22 3981
11 Tran V H, Cheong S A and Bui N D 2019 Journal of Systems Science and Complexity 32 1251
12 Chen S M, Xu Y F and Nie S 2017 Physica A 471 536
13 Jing K, Du X, Shen L and Tang L 2019 Physica A 534 122061
14 Wang J W 2013 Safety Science 53 219
15 Motter A E and Lai Y C 2002 Phys. Rev. E 66 065102
16 Wang W X and Chen G R 2008 Phys. Rev. E 77 026101
17 Wang J W and Rong L L 2009 Acta Phys. Sin. 58 3714 (in Chinese)
18 Zhu Q, Zhu Z, Qi Y, Yu H and Xu Y 2018 Physica A 501 42
19 Xu S, Xia Y and Ouyang M 2019 Physica A 123 157
20 HaoY, Jia L and Wang Y 2019 Physica A 123 373
21 Qi X, Yang G and Liu L 2020 Physica A 539 122870
22 Wang J W and Rong L L 2009 Physica A 388 1289
23 Wang J W, Rong L L and Wang D 2010 Journal of Management Sciences in China 13 42
24 Liu H, Hua Y, Yin R and Deng Y 2017 Neurocomputing 260 443
25 Wang B and Kim B J 2007 Europhys. Lett. 78 48001
26 Li P, Wang B H, Sun H, Gao P and Zhou T 2008 Eur. Phys. J. B 62 101
27 Song B, Zhang Z, Song Y, Jiang G, Li Y and Su X 2019 Physica A 532 121729
28 Holme P, Kim B J, Yoon C N and Han S K 2002 Phys. Rev. E 65 056109
29 Macdonald P J, Almaas E and Barabdsi A L 2005 Europhy. Lett. 72 308
30 Blondel V D, Guillaume J L, Lambiotte R and Lefebvre E 2008 J. Stat. Mech. P10008
31 Liu J, Xiong Q Y, Shi X, Wang K and Shi W R 2015 Chin. Phys. B 24 076401
32 Barabàsi A L and Albert R 1999 Science 286 509
[1] Analysis of cut vertex in the control of complex networks
Jie Zhou(周洁), Cheng Yuan(袁诚), Zu-Yu Qian(钱祖燏), Bing-Hong Wang(汪秉宏), and Sen Nie(聂森). Chin. Phys. B, 2023, 32(2): 028902.
[2] Research on the model of high robustness computational optical imaging system
Yun Su(苏云), Teli Xi(席特立), and Xiaopeng Shao(邵晓鹏). Chin. Phys. B, 2023, 32(2): 024202.
[3] Vertex centrality of complex networks based on joint nonnegative matrix factorization and graph embedding
Pengli Lu(卢鹏丽) and Wei Chen(陈玮). Chin. Phys. B, 2023, 32(1): 018903.
[4] Robustness measurement of scale-free networks based on motif entropy
Yun-Yun Yang(杨云云), Biao Feng(冯彪), Liao Zhang(张辽), Shu-Hong Xue(薛舒红), Xin-Lin Xie(谢新林), and Jian-Rong Wang(王建荣). Chin. Phys. B, 2022, 31(8): 080201.
[5] Effect of observation time on source identification of diffusion in complex networks
Chaoyi Shi(史朝义), Qi Zhang(张琦), and Tianguang Chu(楚天广). Chin. Phys. B, 2022, 31(7): 070203.
[6] An extended improved global structure model for influential node identification in complex networks
Jing-Cheng Zhu(朱敬成) and Lun-Wen Wang(王伦文). Chin. Phys. B, 2022, 31(6): 068904.
[7] Characteristics of vapor based on complex networks in China
Ai-Xia Feng(冯爱霞), Qi-Guang Wang(王启光), Shi-Xuan Zhang(张世轩), Takeshi Enomoto(榎本刚), Zhi-Qiang Gong(龚志强), Ying-Ying Hu(胡莹莹), and Guo-Lin Feng(封国林). Chin. Phys. B, 2022, 31(4): 049201.
[8] Robust H state estimation for a class of complex networks with dynamic event-triggered scheme against hybrid attacks
Yahan Deng(邓雅瀚), Zhongkai Mo(莫中凯), and Hongqian Lu(陆宏谦). Chin. Phys. B, 2022, 31(2): 020503.
[9] Explosive synchronization: From synthetic to real-world networks
Atiyeh Bayani, Sajad Jafari, and Hamed Azarnoush. Chin. Phys. B, 2022, 31(2): 020504.
[10] High-fidelity resonant tunneling passage in three-waveguide system
Rui-Qiong Ma(马瑞琼), Jian Shi(时坚), Lin Liu(刘琳), Meng Liang(梁猛), Zuo-Liang Duan(段作梁), Wei Gao(高伟), and Jun Dong(董军). Chin. Phys. B, 2022, 31(2): 024202.
[11] Finite-time synchronization of uncertain fractional-order multi-weighted complex networks with external disturbances via adaptive quantized control
Hongwei Zhang(张红伟), Ran Cheng(程然), and Dawei Ding(丁大为). Chin. Phys. B, 2022, 31(10): 100504.
[12] Explosive synchronization in a mobile network in the presence of a positive feedback mechanism
Dong-Jie Qian(钱冬杰). Chin. Phys. B, 2022, 31(1): 010503.
[13] LCH: A local clustering H-index centrality measure for identifying and ranking influential nodes in complex networks
Gui-Qiong Xu(徐桂琼), Lei Meng(孟蕾), Deng-Qin Tu(涂登琴), and Ping-Le Yang(杨平乐). Chin. Phys. B, 2021, 30(8): 088901.
[14] Design and investigation of novel ultra-high-voltage junction field-effect transistor embedded with NPN
Xi-Kun Feng(冯希昆), Xiao-Feng Gu(顾晓峰), Qin-Ling Ma(马琴玲), Yan-Ni Yang(杨燕妮), and Hai-Lian Liang(梁海莲). Chin. Phys. B, 2021, 30(7): 078502.
[15] Complex network perspective on modelling chaotic systems via machine learning
Tong-Feng Weng(翁同峰), Xin-Xin Cao(曹欣欣), and Hui-Jie Yang(杨会杰). Chin. Phys. B, 2021, 30(6): 060506.
No Suggested Reading articles found!