Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(6): 060306    DOI: 10.1088/1674-1056/ad3811
GENERAL Prev   Next  

Robust optical mode converter based on topological waveguide arrays

Yu-Xiang Xu(徐宇翔)†, Wen-Jian Tang(唐文剑)†, Li-Wei Jiang(姜力炜), De-Xing Wu(吴德兴), Heng Wang(王恒), Bing-Cong Xu(许冰聪), and Lin Chen(陈林)‡
Wuhan National Laboratory for Optoelectronics and School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China
Abstract  Optical mode converters are essential for enhancing the capacity of optical communication systems. However, fabrication errors restrict the further improvement of conventional mode converters. To address this challenge, we have designed an on-chip TE$_{0}$-TE$_{1}$ mode converter based on topologically protected waveguide arrays. The simulation results demonstrate that the converter exhibits a mode coupling efficiency of 93.5% near 1550nm and can tolerate a relative fabrication error of 30%. Our design approach can be extended to enhance the robustness for other integrated photonic devices, beneficial for future development of optical network systems.
Keywords:  on-chip integrated photonic devices      topological photonics      mode converter      robustness  
Received:  09 January 2024      Revised:  14 March 2024      Accepted manuscript online:  27 March 2024
PACS:  03.65.Vf (Phases: geometric; dynamic or topological)  
  42.82.Et (Waveguides, couplers, and arrays)  
  85.60.-q (Optoelectronic devices)  
Fund: Project supported by the National Undergraduate Training Projects for Innovation and Entrepreneurship (Grant No. 5003182007), the National Natural Science Foundation of China (Grant No. 12074137), the National Key Research and Development Project of China (Grant No. 2021YFB2801903), and the Natural Science Foundation from the Science, Technology, and Innovation Commission of Shenzhen Municipality (Grant No. JCYJ20220530161010023).
Corresponding Authors:  Lin Chen     E-mail:  chen.lin@mail.hust.edu.cn

Cite this article: 

Yu-Xiang Xu(徐宇翔), Wen-Jian Tang(唐文剑), Li-Wei Jiang(姜力炜), De-Xing Wu(吴德兴), Heng Wang(王恒), Bing-Cong Xu(许冰聪), and Lin Chen(陈林) Robust optical mode converter based on topological waveguide arrays 2024 Chin. Phys. B 33 060306

[1] Blanco-Redondo A, Andonegui I, Collins M J, Harari G, Lumer Y, Rechtsman M C, Eggleton B J and Segev M 2016 Phys. Rev. Lett. 116 163901
[2] Ding Y, Xu J, Da Ros F, Huang B, Ou H and Peucheret C 2013 Opt. Express 21 10376
[3] Li A D, Dong J J, Wang J, Cheng Z W, Ho J S, Zhang D W, Wen J, Zhang X L, Chan C T, Andrea Alù, Qiu C W and Chen L 2020 Phys. Rev. Lett. 125 187403
[4] Meng Y, Wu X X, Shen Y X, Liu D, Liang Z X, Zhang X and Jensen Li 2022 Sci. China-Phys. Mech. Astron. 65 224611
[5] Hu Y, Yu M, Zhu D, Sinclair N, Shams-Ansari A, Shao L, Holzgrafe J, Puma E, Zhang M and Lončar M 2021 Nature 599 587
[6] Wan X, Peng C Y, Li G, Yang J H and Qi X Y 2023 Chin. Phys. B 32 114208
[7] Shu X Q, Li A D, Hu G W, Wang J, Alù A and Chen L 2022 Nat. Commun. 13 2123
[8] Li A D, Chen W J, Wei H, Lu G W, Alù A, Qiu C W and Chen L 2022 Phys. Rev. Lett. 129 127401
[9] Li A D, Wei H, Michele Cotrufo, Chen W J, Sander Mann, Ni X, Xu B C, Chen J F, Wang J, Fan S H, Qiu C W, Alù A and Chen L 2023 Nat. Nanotechnol. 18 706
[10] Shu X Q, Zhong Q, Hong K, You O B, Wang J, Hu G W, Alù A, Zhang S, Demetrios N Christodoulides and Chen L 2024 Light. Sci. Appl. 13 65
[11] Wang J, Ashrafi R, Adams R, Glesk I, Gasulla I, Capmany J and Chen L R 2016 Sci. Rep. 6 30235
[12] Zhou Z, Yin B and Michel J 2015 Light Sci. Appl. 4 e358
[13] Liang Y, Li C, Huang Y Z and Zhang Q 2020 ACS Nano 14 14375
[14] Amin R, Suer C, Ma Z, Sarpkaya I, Khurgin J B, Agarwal R and Sorger V J 2017 Solid State Electron. 136 101
[15] Wang C, Zhang M, Chen X, Bertrand M, Shams-Ansari A, Chandrasekhar S, Winzer P and Lončar M 2018 Nature 562 101
[16] Assefa S, Xia F and Vlasov Y A 2010 Nature 464 80
[17] Marcatili E A 1969 Bell Syst. Tech. J. 48 2071
[18] Cooper M L, Gupta G, Schneider M A, Green W M, Assefa S, Xia F, Gifford D K and Mookherjea S 2010 Opt. Lett. 35 3030
[19] Groves T R 2014 Nanolithography (Sawston Cambridge: Woodhead Publishing) pp. 80-115
[20] Awad M and Cheville R A 2005 Appl. Phys. Lett. 86 221107
[21] Rajurkar K P, Levy G, Malshe A, Sundaram M, McGeough J, Hu X, Resnick R, DeSilva A and DeSilva A 2006 CIRP Ann. Manuf. Technol. 55 643
[22] Chen J F and Li Z Y 2022 Chin. Phys. B 31 114207
[23] Xu Z H, Xia X and Chen S 2022 Sci. China-Phys. Mech. Astron. 65 227211
[24] Xu H S and Jin L 2023 Phys. Rev. Res. 5 L042005
[25] Wu H C, Xu H S, Xie L C and Jin L 2024 Phys. Rev. Lett. 132 083801
[26] Wang P, Jin L and Song Z 2024 Phys. Rev. B 109 115406
[27] Lustig E, Weimann S, Plotnik Y, Lumer Y, Bandres M A, Szameit A and Segev M 2019 Nature 567 356
[28] Zhu X Y, Fu J C, Ding F, Jin Y and Wu A M 2018 Sci. Rep. 8 15240
[29] Xiao L, Zhan X, Bian Z H, Wang K, Zhang X, Wang X P, Li J, Mochizuki K, Kim D, Kawakami N, Yi W, Obuse H, Sanders B C and Xue P 2017 Nat. Phys. 13 1117
[30] Krauss T F 2008 Nat. Photon. 2 448
[31] Dokania R K and Apsel A B 2009 Proceedings of the 19th ACM Great Lakes Symposium on VLSI, May 10-12, 2009, Boston, USA, p. 275
[32] Thompson M G, Politi A, Matthews J C and O’Brien J L 2011 IET Circuits Dev. Syst. 5 94
[33] Chen Y, He X T, Cheng Y J, Qiu H Y, Feng L T, Zhang M, Dai D X, Guo G C, Dong J W and Ren X F 2021 Phys. Rev. Lett. 126 230503
[34] Song W, Sun W, Chen C, Song Q, Xiao S, Zhu S and T Li 2020 Laser Photon. Rev. 14 1900193
[35] Zhao X J, Hamed Dalir, Xu X C and Chen R T 2017 Appl. Phys. Express 10 072502
[36] Reithmaier J P, Sȩk G, Löffler A, Hofmann C, Kuhn S, Reitzenstein S, Kulakovskii V D, Reinecke T L and Forchel A 2004 Nature 432 197
[37] Chuang S L 1987 J. Light. Technol. 5 5
[38] Asbóth J K, Oroszl ány L and P ályi A 2016 A Short Course on Topological Insulators, Vol. 919 (Switzerland: Springer International Publishing) pp. 1-22
[39] Xu B C, Xie B Y, Xu L H, Deng M, Chen W, Wei H, Dong F, Wang J, Qiu C W, Zhang S and Chen L 2023 Adv. Photon. 5 036005
[1] Progress and realization platforms of dynamic topological photonics
Qiu-Chen Yan(闫秋辰), Rui Ma(马睿), Xiao-Yong Hu(胡小永), and Qi-Huang Gong(龚旗煌). Chin. Phys. B, 2024, 33(1): 010301.
[2] Percolation transitions in edge-coupled interdependent networks with directed dependency links
Yan-Li Gao(高彦丽), Hai-Bo Yu(于海波), Jie Zhou(周杰), Yin-Zuo Zhou(周银座), and Shi-Ming Chen(陈世明). Chin. Phys. B, 2023, 32(9): 098902.
[3] Robustness of community networks against cascading failures with heterogeneous redistribution strategies
Bo Song(宋波), Hui-Ming Wu(吴惠明), Yu-Rong Song(宋玉蓉), Guo-Ping Jiang(蒋国平),Ling-Ling Xia(夏玲玲), and Xu Wang(王旭). Chin. Phys. B, 2023, 32(9): 098905.
[4] High-performance chiral all-optical OR logic gate based on topological edge states of valley photonic crystal
Xiaorong Wang(王晓蓉), Hongming Fei(费宏明), Han Lin(林瀚), Min Wu(武敏), Lijuan Kang(康丽娟), Mingda Zhang(张明达), Xin Liu(刘欣), Yibiao Yang(杨毅彪), and Liantuan Xiao(肖连团). Chin. Phys. B, 2023, 32(7): 074205.
[5] Theoretical research on the transverse spin of structured optical fields inside a waveguide
Zhiyong Wang(王智勇), Xiangru Wang(汪相如), Anran Li(李岸然), Kaiqiang Zhang(张开强), Yukun Ji(纪玉坤), and Mingyu Zhong(钟明玉). Chin. Phys. B, 2023, 32(6): 064207.
[6] Doping-enhanced robustness of anomaly-related magnetoresistance in WTe2±α flakes
Jianchao Meng(孟建超), Xinxiang Chen(陈鑫祥), Tingna Shao(邵婷娜), Mingrui Liu(刘明睿), Weimin Jiang(姜伟民), Zitao Zhang(张子涛), Changmin Xiong(熊昌民), Ruifen Dou(窦瑞芬), and Jiacai Nie(聂家财). Chin. Phys. B, 2023, 32(4): 047502.
[7] Research on the model of high robustness computational optical imaging system
Yun Su(苏云), Teli Xi(席特立), and Xiaopeng Shao(邵晓鹏). Chin. Phys. B, 2023, 32(2): 024202.
[8] Effect of short-term plasticity on working memory
Fan Yang(杨帆) and Feng Liu(刘锋). Chin. Phys. B, 2023, 32(11): 118706.
[9] Robustness measurement of scale-free networks based on motif entropy
Yun-Yun Yang(杨云云), Biao Feng(冯彪), Liao Zhang(张辽), Shu-Hong Xue(薛舒红), Xin-Lin Xie(谢新林), and Jian-Rong Wang(王建荣). Chin. Phys. B, 2022, 31(8): 080201.
[10] High-fidelity resonant tunneling passage in three-waveguide system
Rui-Qiong Ma(马瑞琼), Jian Shi(时坚), Lin Liu(刘琳), Meng Liang(梁猛), Zuo-Liang Duan(段作梁), Wei Gao(高伟), and Jun Dong(董军). Chin. Phys. B, 2022, 31(2): 024202.
[11] Design and investigation of novel ultra-high-voltage junction field-effect transistor embedded with NPN
Xi-Kun Feng(冯希昆), Xiao-Feng Gu(顾晓峰), Qin-Ling Ma(马琴玲), Yan-Ni Yang(杨燕妮), and Hai-Lian Liang(梁海莲). Chin. Phys. B, 2021, 30(7): 078502.
[12] Dynamical robustness of networks based on betweenness against multi-node attack
Zi-Wei Yuan(袁紫薇), Chang-Chun Lv(吕长春), Shu-Bin Si(司书宾), and Dong-Li Duan(段东立). Chin. Phys. B, 2021, 30(5): 050501.
[13] Improving robustness of complex networks by a new capacity allocation strategy
Jun Liu(刘军). Chin. Phys. B, 2021, 30(1): 016401.
[14] Modes decomposition in particle-in-cell software CEMPIC
Aiping Fang(方爱平)†, Shanshan Liang(梁闪闪), Yongdong Li(李永东), Hongguang Wang(王洪广), and Yue Wang(王玥). Chin. Phys. B, 2020, 29(10): 100205.
[15] Robustness self-testing of states and measurements in the prepare-and-measure scenario with 3→1 random access code
Shi-Hui Wei(魏士慧), Fen-Zhuo Guo(郭奋卓), Xin-Hui Li(李新慧), Qiao-Yan Wen(温巧燕). Chin. Phys. B, 2019, 28(7): 070304.
No Suggested Reading articles found!