Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(7): 070304    DOI: 10.1088/1674-1056/28/7/070304
GENERAL Prev   Next  

Robustness self-testing of states and measurements in the prepare-and-measure scenario with 3→1 random access code

Shi-Hui Wei(魏士慧)1,2, Fen-Zhuo Guo(郭奋卓)1,2, Xin-Hui Li(李新慧)1, Qiao-Yan Wen(温巧燕)1
1 State Key Laboratory of Networking and Switching Technology, Beijing University of Posts and Telecommunications, Beijing 100876, China;
2 School of Science, Beijing University of Posts and Telecommunications, Beijing 100876, China
Abstract  

Recently, Tavakoli et al. proposed a self-testing scheme in the prepare-and-measure scenario, showing that self-testing is not necessarily based on entanglement and violation of a Bell inequality[Phys. Rev. A 98 062307 (2018)]. They realized the self-testing of preparations and measurements in an N→1 (N ≥ 2) random access code (RAC), and provided robustness bounds in a 2→1 RAC. Since all N→1 RACs with shared randomness are combinations of 2→1 and 3→1 RACs, the 3→1 RAC is just as important as the 2→1 RAC. In this paper, we find a set of preparations and measurements in the 3→1 RAC, and use them to complete the robustness self-testing analysis in the prepare-and-measure scenario. The method is robust to small but inevitable experimental errors.

Keywords:  robustness self-testing      prepare-and-measure scenario      3→1 random access code  
Received:  23 December 2018      Revised:  13 May 2019      Accepted manuscript online: 
PACS:  03.65.Ud (Entanglement and quantum nonlocality)  
  03.67.-a (Quantum information)  
  03.67.Dd (Quantum cryptography and communication security)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 61572081, 61672110, and 61671082).

Corresponding Authors:  Fen-Zhuo Guo     E-mail:  gfenzhuo@bupt.edu.cn

Cite this article: 

Shi-Hui Wei(魏士慧), Fen-Zhuo Guo(郭奋卓), Xin-Hui Li(李新慧), Qiao-Yan Wen(温巧燕) Robustness self-testing of states and measurements in the prepare-and-measure scenario with 3→1 random access code 2019 Chin. Phys. B 28 070304

[1] Acín A, Brunner N, Gisin N, Massar S, Pironio S and Scarani, V 2007 Phys. Rev. Lett. 98 230501
[2] Vazirani U and Vidick T 2014 Phys. Rev. Lett. 113 140501
[3] MillerCA and Shi Y 2016 J. ACM 63 33
[4] Tan Y G, Hu Y H and Yang H F 2016 Chin. Phys. Lett. 33 030302
[5] Reichardt B W and Unger F 2013 Nature 496 456
[6] McKague M 2016 Theory Comput. 12 1
[7] Gheorghiu A, Wallden P and Kashefi E 2017 New J. Phys. 19 023043
[8] Liu L, Gao T and Yan F 2018 Chin. Phys. B 27 020306
[9] Popescu S and Rohrlich D 1992 Phys. Lett. A 169 411
[10] Vazirani U and Vidick T 1969 Phys. Rev. Lett. 23 880
[11] Mayers D and Yao A 2004 Quant. Inf. Comp. 4 273
[12] McKague M, Yang T H and Scarani V 2012 J. Phys. A: Math. Theor 45 455304
[13] Yang T H and Navascués M 2013 Phys. Rev. A 87 050102
[14] Wu X, Cai Y, Yang T H, Le H N, Bancal J D and Scarani, V 2014 New J. Phys. 90 042339
[15] Pál K F, Vértesi T and Navascués M 2014 Phys. Rev. A 90 042340
[16] Wang Y, Wu X and Scarani V 2016 New J. Phys. 18 025021
[17] McKague M 2016 New J. Phys. 18 045013
[18] Bowles J, Šupić I, Cavalcanti D and Acín A 2018 Phys. Rev. A 98 042336
[19] Coladangelo A, Goh K T and Scarani V 2017 Nat. Commun. 8 15485
[20] Šupić I, Coladangelo A, Augusiak R and Acín A 2018 New J. Phys. 20 083041
[21] Kaniewski J 2016 Phys. Rev. Lett. 117 070402
[22] Tavakoli A, Kaniewski J, Vertesi T and Rosset D 2018 Phys. Rev. A 98 062307
[23] Ambainis A, Leung D, Mancinska L and Ozols M 2008 arXiv:0810.2937 [hep-ph]
[24] Gallego R, Brunner N, Hadley C and Acín A 2010 Phys. Rev. Lett. 105 230501
[25] Li H W, Pawlowski M, Yin Z Q, Guo G C and Han Z F 2012 Phys. Rev. A 85 052308
[26] Wang Y K, Qin S J, Wu X, Gao F and Wen Q Y 2015 Phys. Rev. A 92 052321
[27] Hayashi M, Iwama K, Nishimura H, Raymond R and Yamashita S 2006 New J. Phys. 8 129
[28] Casaccino A, Galvao E F and Severini S 2008 Phys. Rev. A 78 022310
[1] Unified entropy entanglement with tighter constraints on multipartite systems
Qi Sun(孙琪), Tao Li(李陶), Zhi-Xiang Jin(靳志祥), and Deng-Feng Liang(梁登峰). Chin. Phys. B, 2023, 32(3): 030304.
[2] Entanglement and thermalization in the extended Bose-Hubbard model after a quantum quench: A correlation analysis
Xiao-Qiang Su(苏晓强), Zong-Ju Xu(许宗菊), and You-Quan Zhao(赵有权). Chin. Phys. B, 2023, 32(2): 020506.
[3] Transformation relation between coherence and entanglement for two-qubit states
Qing-Yun Zhou(周晴云), Xiao-Gang Fan(范小刚), Fa Zhao(赵发), Dong Wang(王栋), and Liu Ye(叶柳). Chin. Phys. B, 2023, 32(1): 010304.
[4] Quantum steerability of two qubits mediated by one-dimensional plasmonic waveguides
Ye-Qi Zhang(张业奇), Xiao-Ting Ding(丁潇婷), Jiao Sun(孙娇), and Tian-Hu Wang(王天虎). Chin. Phys. B, 2022, 31(12): 120305.
[5] Measurement-device-independent one-step quantum secure direct communication
Jia-Wei Ying(应佳伟), Lan Zhou(周澜), Wei Zhong(钟伟), and Yu-Bo Sheng(盛宇波). Chin. Phys. B, 2022, 31(12): 120303.
[6] Quantum correlation and entropic uncertainty in a quantum-dot system
Ying-Yue Yang(杨颖玥), Li-Juan Li(李丽娟), Liu Ye(叶柳), and Dong Wang(王栋). Chin. Phys. B, 2022, 31(10): 100303.
[7] Measurement-device-independent quantum secret sharing with hyper-encoding
Xing-Xing Ju(居星星), Wei Zhong(钟伟), Yu-Bo Sheng(盛宇波), and Lan Zhou(周澜). Chin. Phys. B, 2022, 31(10): 100302.
[8] Steering quantum nonlocalities of quantum dot system suffering from decoherence
Huan Yang(杨欢), Ling-Ling Xing(邢玲玲), Zhi-Yong Ding(丁智勇), Gang Zhang(张刚), and Liu Ye(叶柳). Chin. Phys. B, 2022, 31(9): 090302.
[9] Probabilistic quantum teleportation of shared quantum secret
Hengji Li(李恒吉), Jian Li(李剑), and Xiubo Chen(陈秀波). Chin. Phys. B, 2022, 31(9): 090303.
[10] Robustness of two-qubit and three-qubit states in correlated quantum channels
Zhan-Yun Wang(王展云), Feng-Lin Wu(吴风霖), Zhen-Yu Peng(彭振宇), and Si-Yuan Liu(刘思远). Chin. Phys. B, 2022, 31(7): 070302.
[11] Local sum uncertainty relations for angular momentum operators of bipartite permutation symmetric systems
I Reena, H S Karthik, J Prabhu Tej, Sudha, A R Usha Devi, and A K Rajagopal. Chin. Phys. B, 2022, 31(6): 060301.
[12] Constructing the three-qudit unextendible product bases with strong nonlocality
Bichen Che(车碧琛), Zhao Dou(窦钊), Xiubo Chen(陈秀波), Yu Yang(杨榆), Jian Li(李剑), and Yixian Yang(杨义先). Chin. Phys. B, 2022, 31(6): 060302.
[13] Self-error-rejecting multipartite entanglement purification for electron systems assisted by quantum-dot spins in optical microcavities
Yong-Ting Liu(刘永婷), Yi-Ming Wu(吴一鸣), and Fang-Fang Du(杜芳芳). Chin. Phys. B, 2022, 31(5): 050303.
[14] Experimental realization of quantum controlled teleportation of arbitrary two-qubit state via a five-qubit entangled state
Xiao-Fang Liu(刘晓芳), Dong-Fen Li(李冬芬), Yun-Dan Zheng(郑云丹), Xiao-Long Yang(杨小龙), Jie Zhou(周杰), Yu-Qiao Tan(谭玉乔), and Ming-Zhe Liu(刘明哲). Chin. Phys. B, 2022, 31(5): 050301.
[15] Protecting geometric quantum discord via partially collapsing measurements of two qubits in multiple bosonic reservoirs
Xue-Yun Bai(白雪云) and Su-Ying Zhang(张素英). Chin. Phys. B, 2022, 31(4): 040308.
No Suggested Reading articles found!