Dual-species stimulated deceleration of MgF molecules with Rb atoms
Jin Wei(魏晋)1, Di Wu(吴迪)1, Chenyu Zu(祖晨宇)1, Yong Xia(夏勇)1,2,3,†, and Jianping Yin(印建平)1
1 State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China; 2 Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China; 3 NYU-ECNU Institute of Physics at NYU Shanghai, Shanghai 200062, China
Abstract We propose a scheme for dual-species deceleration and trapping of a cold atom-molecule mixture by a frequency chirping stimulated force. We study the stimulated force exerted on MgF and Rb using optical Bloch equations based on a direct numerical solution for the time-dependent density matrix. We analyze the relationship between the frequency chirping rate and the number of MgF molecules and Rb atoms. In addition, we study the dynamical process of molecular deceleration and the effect of transverse diffusion. Monte-Carlo simulations show that buffer-gas-cooled MgF and Rb beams, with initial velocities of 200 m/s and 130 m/s respectively, can be decelerated to less than 10 m/s. This is achieved with laser powers of as low as 357 mW for MgF and 10 mW for Rb per traveling wave. The rapid deceleration minimizes molecular loss due to transverse diffusion during the deceleration process. The estimated number of molecules that can be trapped in a magneto-optical trap (MOT) is about 9.0, which is an order of magnitude larger than the number of MgF molecules decelerated by the spontaneous radiation force. The results offer a promising starting point for further studies of sympathetic cooling.
Jin Wei(魏晋), Di Wu(吴迪), Chenyu Zu(祖晨宇), Yong Xia(夏勇), and Jianping Yin(印建平) Dual-species stimulated deceleration of MgF molecules with Rb atoms 2025 Chin. Phys. B 34 073701
[1] DeMille D, Doyle J M and Sushkov A O 2017 Science 357 990 [2] Anderegg L, Vilas N B, Hallas C, Robichaud P, Jadbabaie A, Doyle J M and Hutzler N R 2023 Science 382 665 [3] DeMille D, Hutzler N R, Rey A M and Zelevinsky T 2024 Nat. Phys. 20 741 [4] Carr L D, DeMille D, Krems R V and Ye J 2009 New J. Phys. 11 055049 [5] Karman T, Tomza M and Pérez-Ríos J 2024 Nat. Phys. 20 722 [6] Ruttley D K, Hepworth T R, Guttridge A and Cornish S L 2025 Nature 637 827 [7] Holland C M, Lu Y and Cheuk L W 2023 Science 382 1143 [8] Bao Y C, Yu S S, Anderegg L, Chae E, Ketterle W, Ni K K and Doyle J M 2023 Science 382 1138 [9] Langen T, Valtolina G, Wang D and Ye J 2024 Nat. Phys. 20 702 [10] Barry J F, McCarron D J, Norrgard E B, Steinecker M H and DeMille D 2014 Nature 512 286 [11] Anderegg L, Augenbraun B L, Chae E, Hemmerling B, Hutzler N R, Ravi A, Collopy A, Ye J, Ketterle W and Doyle J M 2017 Phys. Rev. Lett. 119 103201 [12] Truppe S, Williams H J, Hambach M, Caldwell L, Fitch N J, Hinds E A, Sauer B E and Tarbutt M R 2017 Nat. Phys. 13 1173 [13] Collopy A L, Ding S, Wu Y, Finneran I A, Anderegg L, Augenbraun B L, Doyle J M and Ye J 2018 Phys. Rev. Lett. 121 213201 [14] Zeng Z X, Deng S H, Yang S K and Yan B 2024 Phys. Rev. Lett. 133 143404 [15] Vilas N B, Hallas C, Anderegg L, Robichaud P, Winnicki A, Mitra D and Doyle J M 2022 Nature 606 70 [16] Anderegg L, Augenbraun B L, Bao Y C, Burchesky S, Cheuk L W, Ketterle W and Doyle J M 2018 Nat. Phys. 14 890 [17] McCarron D J, Steinecker M H, Zhu Y and DeMille D 2018 Phys. Rev. Lett. 121 013202 [18] Williams H J, Caldwell L, Fitch N J, Truppe S, Rodewald J, Hinds E A, Sauer B E and Tarbutt M R 2018 Phys. Rev. Lett. 120 163201 [19] Anderegg L, Cheuk L W, Bao Y C, Burchesky S, Ketterle W, Ni K K and Doyle J M 2019 Science 365 1156 [20] Barry J F, Shuman E S, Norrgard E B and DeMille D 2012 Phys. Rev. Lett. 108 103002 [21] Hemmerling B, Chae E, Ravi A, Anderegg L, Drayna G K, Hutzler N R, Collopy A L, Ye J, Ketterle W and Doyle J M 2016 J. Phys. B 49 174001 [22] Truppe S, Williams H J, Fitch N J, Hambach M, Wall T E, Hinds E A, Sauer B E and Tarbutt M R 2017 New J. Phys. 19 022001 [23] Yeo M, Hummon M T, Collopy A L, Yan B, Hemmerling B, Chae E, Doyle J M and Ye J 2015 Phys. Rev. Lett. 114 223003 [24] Kaebert P, Stepanova M, Poll T, Petzold M, Xu S, Siercke M and Ospelkaus S 2021 New J. Phys. 23 093013 [25] Rodriguez K J, Pilgram N H, Barker D S, Eckel S P and Norrgard E B 2023 Phys. Rev. A 108 033105 [26] Yan K, Gu R X, Wu D, Wei J, Xia Y and Yin J P 2022 Front. Phys. 17 42502 [27] Metcalf H 2017 Rev. Mod. Phys. 89 041001 [28] Galica S E, Aldridge L, McCarron D J, Eyler E E and Gould P L 2018 Phys. Rev. A 98 023408 [29] Kozyryev I, Baum L, Aldridge L, Yu P, Eyler E E and Doyle J M 2018 Phys. Rev. Lett. 120 063205 [30] Yin Y N, Xu S P, Xia M, Xia Y and Yin J P 2018 Phys. Rev. A 97 043403 [31] Marsman A, Horbatsch M and Hessels E A 2023 Phys. Rev. A 108 012811 [32] Wallis A O G and Hutson J M 2009 Phys. Rev. Lett. 103 183201 [33] Lim J, Frye M D, Hutson J M and Tarbutt M R 2015 Phys. Rev. A 92 053419 [34] Akerman N, Karpov M, Segev Y, et al. 2017 Phys. Rev. Lett. 119 073204 [35] Morita M, Kosicki M B, · Zuchowski P S, et al. 2018 Phys. Rev. A 98 042702 [36] Liu Y and Luo L 2021 Front. Phys. 16 12504 [37] Zhu Y 2021 Experiments with 87Rb: Towards Co-trapping 88Sr19F and 87Rb Ph.D. Dissertation (Yale University) [38] Zhang C, Rittenhouse S T, Tscherbul T V, et al. 2024 Phys. Rev. Lett. 132 033001 [39] Rodriguez K J, Pilgram N H, Barker D S, Eckel S P and Norrgard E B 2023 Phys. Rev. A 108 033105 [40] Pilgram N H, Baldwin B W, La Mantia D S, Eckel S P and Norrgard E B 2024 Phys. Rev. A 110 023110 [41] Wu D, Yan K, Wei J, Dong T J, Xia Y and Yin J P 2025 Front. Phys. 20 032201 [42] Chae E 2021 Phys. Chem. Chem. Phys. 23 1215 [43] Xu S, Xia M, Gu R X, Yin Y N, Xu L, Xia Y and Yin J P 2019 Phys. Rev. A 99 033408 [44] Yan K, Wei B, Yin Y L, Xu S, Xu L, Xia M, Gu R X, Xia Y and Yin J P 2020 New J. Phys. 22 033003 [45] Xia M, Gu R X, Yan K, Wu D, Xu L, Xia Y and Yin J P 2021 Phys. Rev. A 103 013321 [46] Gu R X, Yan K,Wu D,Wei J, Xia Y and Yin J P 2022 Phys. Rev. A 105 042806 [47] Aldridge L, Galica S E and Eyler E E 2016 Phys. Rev. A 93 013419 [48] Liebisch T C, Blanshan E, Donley E A and Kitching J 2012 Phys. Rev. A 85 013407 [49] Anderson M H, Ensher J R, Matthews M R, et al. 1995 Science 269 198 [50] Hofsäss S, Doppelbauer M, Wright S C, Kray S, Sartakov B G, Pérez- Ríos J, Meijer G and Truppe S 2021 New J. Phys. 23 075001 [51] Hutzler N R, Lu H I and Doyle J M 2012 Chem. Rev. 112 4803 [52] Wright S C, Doppelbauer M, Hofsäss S, Schewe H C, Sartakov B, Meijer G and Truppe S 2023 Mol. Phys. 121 e2146541 [53] Galica S E, Aldridge L and Eyler E E 2013 Phys. Rev. A 88 043418 [54] Wei J, Wu D, Dong T J, Zu C Y, Xia Y and Yin J P 2025 Phys. Rev. A 111 013307 [55] Chieda M A and Eyler E E 2012 Phys. Rev. A 86 053415 [56] Shuman E S, Barry J F and DeMille D 2010 Nature 467 820 [57] Williams H J, Truppe S, Hambach M, Caldwell L, Fitch N J, Hinds E A, Sauer B E and Tarbutt M R 2017 New J. Phys. 19 113035
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.