Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(7): 073701    DOI: 10.1088/1674-1056/adcb1f
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

Dual-species stimulated deceleration of MgF molecules with Rb atoms

Jin Wei(魏晋)1, Di Wu(吴迪)1, Chenyu Zu(祖晨宇)1, Yong Xia(夏勇)1,2,3,†, and Jianping Yin(印建平)1
1 State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China;
2 Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China;
3 NYU-ECNU Institute of Physics at NYU Shanghai, Shanghai 200062, China
Abstract  We propose a scheme for dual-species deceleration and trapping of a cold atom-molecule mixture by a frequency chirping stimulated force. We study the stimulated force exerted on MgF and Rb using optical Bloch equations based on a direct numerical solution for the time-dependent density matrix. We analyze the relationship between the frequency chirping rate and the number of MgF molecules and Rb atoms. In addition, we study the dynamical process of molecular deceleration and the effect of transverse diffusion. Monte-Carlo simulations show that buffer-gas-cooled MgF and Rb beams, with initial velocities of 200 m/s and 130 m/s respectively, can be decelerated to less than 10 m/s. This is achieved with laser powers of as low as 357 mW for MgF and 10 mW for Rb per traveling wave. The rapid deceleration minimizes molecular loss due to transverse diffusion during the deceleration process. The estimated number of molecules that can be trapped in a magneto-optical trap (MOT) is about 9.0×106, which is an order of magnitude larger than the number of MgF molecules decelerated by the spontaneous radiation force. The results offer a promising starting point for further studies of sympathetic cooling.
Keywords:  cold molecule      atomic and molecular mixture      frequency chirping      stimulated force  
Received:  21 February 2025      Revised:  03 April 2025      Accepted manuscript online:  10 April 2025
PACS:  37.10.Mn (Slowing and cooling of molecules)  
  37.10.-x (Atom, molecule, and ion cooling methods)  
  37.10.Pq (Trapping of molecules)  
  33.80.-b (Photon interactions with molecules)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 12174115 and 91836103).
Corresponding Authors:  Yong Xia     E-mail:  yxia@phy.ecnu.edu.cn

Cite this article: 

Jin Wei(魏晋), Di Wu(吴迪), Chenyu Zu(祖晨宇), Yong Xia(夏勇), and Jianping Yin(印建平) Dual-species stimulated deceleration of MgF molecules with Rb atoms 2025 Chin. Phys. B 34 073701

[1] DeMille D, Doyle J M and Sushkov A O 2017 Science 357 990
[2] Anderegg L, Vilas N B, Hallas C, Robichaud P, Jadbabaie A, Doyle J M and Hutzler N R 2023 Science 382 665
[3] DeMille D, Hutzler N R, Rey A M and Zelevinsky T 2024 Nat. Phys. 20 741
[4] Carr L D, DeMille D, Krems R V and Ye J 2009 New J. Phys. 11 055049
[5] Karman T, Tomza M and Pérez-Ríos J 2024 Nat. Phys. 20 722
[6] Ruttley D K, Hepworth T R, Guttridge A and Cornish S L 2025 Nature 637 827
[7] Holland C M, Lu Y and Cheuk L W 2023 Science 382 1143
[8] Bao Y C, Yu S S, Anderegg L, Chae E, Ketterle W, Ni K K and Doyle J M 2023 Science 382 1138
[9] Langen T, Valtolina G, Wang D and Ye J 2024 Nat. Phys. 20 702
[10] Barry J F, McCarron D J, Norrgard E B, Steinecker M H and DeMille D 2014 Nature 512 286
[11] Anderegg L, Augenbraun B L, Chae E, Hemmerling B, Hutzler N R, Ravi A, Collopy A, Ye J, Ketterle W and Doyle J M 2017 Phys. Rev. Lett. 119 103201
[12] Truppe S, Williams H J, Hambach M, Caldwell L, Fitch N J, Hinds E A, Sauer B E and Tarbutt M R 2017 Nat. Phys. 13 1173
[13] Collopy A L, Ding S, Wu Y, Finneran I A, Anderegg L, Augenbraun B L, Doyle J M and Ye J 2018 Phys. Rev. Lett. 121 213201
[14] Zeng Z X, Deng S H, Yang S K and Yan B 2024 Phys. Rev. Lett. 133 143404
[15] Vilas N B, Hallas C, Anderegg L, Robichaud P, Winnicki A, Mitra D and Doyle J M 2022 Nature 606 70
[16] Anderegg L, Augenbraun B L, Bao Y C, Burchesky S, Cheuk L W, Ketterle W and Doyle J M 2018 Nat. Phys. 14 890
[17] McCarron D J, Steinecker M H, Zhu Y and DeMille D 2018 Phys. Rev. Lett. 121 013202
[18] Williams H J, Caldwell L, Fitch N J, Truppe S, Rodewald J, Hinds E A, Sauer B E and Tarbutt M R 2018 Phys. Rev. Lett. 120 163201
[19] Anderegg L, Cheuk L W, Bao Y C, Burchesky S, Ketterle W, Ni K K and Doyle J M 2019 Science 365 1156
[20] Barry J F, Shuman E S, Norrgard E B and DeMille D 2012 Phys. Rev. Lett. 108 103002
[21] Hemmerling B, Chae E, Ravi A, Anderegg L, Drayna G K, Hutzler N R, Collopy A L, Ye J, Ketterle W and Doyle J M 2016 J. Phys. B 49 174001
[22] Truppe S, Williams H J, Fitch N J, Hambach M, Wall T E, Hinds E A, Sauer B E and Tarbutt M R 2017 New J. Phys. 19 022001
[23] Yeo M, Hummon M T, Collopy A L, Yan B, Hemmerling B, Chae E, Doyle J M and Ye J 2015 Phys. Rev. Lett. 114 223003
[24] Kaebert P, Stepanova M, Poll T, Petzold M, Xu S, Siercke M and Ospelkaus S 2021 New J. Phys. 23 093013
[25] Rodriguez K J, Pilgram N H, Barker D S, Eckel S P and Norrgard E B 2023 Phys. Rev. A 108 033105
[26] Yan K, Gu R X, Wu D, Wei J, Xia Y and Yin J P 2022 Front. Phys. 17 42502
[27] Metcalf H 2017 Rev. Mod. Phys. 89 041001
[28] Galica S E, Aldridge L, McCarron D J, Eyler E E and Gould P L 2018 Phys. Rev. A 98 023408
[29] Kozyryev I, Baum L, Aldridge L, Yu P, Eyler E E and Doyle J M 2018 Phys. Rev. Lett. 120 063205
[30] Yin Y N, Xu S P, Xia M, Xia Y and Yin J P 2018 Phys. Rev. A 97 043403
[31] Marsman A, Horbatsch M and Hessels E A 2023 Phys. Rev. A 108 012811
[32] Wallis A O G and Hutson J M 2009 Phys. Rev. Lett. 103 183201
[33] Lim J, Frye M D, Hutson J M and Tarbutt M R 2015 Phys. Rev. A 92 053419
[34] Akerman N, Karpov M, Segev Y, et al. 2017 Phys. Rev. Lett. 119 073204
[35] Morita M, Kosicki M B, · Zuchowski P S, et al. 2018 Phys. Rev. A 98 042702
[36] Liu Y and Luo L 2021 Front. Phys. 16 12504
[37] Zhu Y 2021 Experiments with 87Rb: Towards Co-trapping 88Sr19F and 87Rb Ph.D. Dissertation (Yale University)
[38] Zhang C, Rittenhouse S T, Tscherbul T V, et al. 2024 Phys. Rev. Lett. 132 033001
[39] Rodriguez K J, Pilgram N H, Barker D S, Eckel S P and Norrgard E B 2023 Phys. Rev. A 108 033105
[40] Pilgram N H, Baldwin B W, La Mantia D S, Eckel S P and Norrgard E B 2024 Phys. Rev. A 110 023110
[41] Wu D, Yan K, Wei J, Dong T J, Xia Y and Yin J P 2025 Front. Phys. 20 032201
[42] Chae E 2021 Phys. Chem. Chem. Phys. 23 1215
[43] Xu S, Xia M, Gu R X, Yin Y N, Xu L, Xia Y and Yin J P 2019 Phys. Rev. A 99 033408
[44] Yan K, Wei B, Yin Y L, Xu S, Xu L, Xia M, Gu R X, Xia Y and Yin J P 2020 New J. Phys. 22 033003
[45] Xia M, Gu R X, Yan K, Wu D, Xu L, Xia Y and Yin J P 2021 Phys. Rev. A 103 013321
[46] Gu R X, Yan K,Wu D,Wei J, Xia Y and Yin J P 2022 Phys. Rev. A 105 042806
[47] Aldridge L, Galica S E and Eyler E E 2016 Phys. Rev. A 93 013419
[48] Liebisch T C, Blanshan E, Donley E A and Kitching J 2012 Phys. Rev. A 85 013407
[49] Anderson M H, Ensher J R, Matthews M R, et al. 1995 Science 269 198
[50] Hofsäss S, Doppelbauer M, Wright S C, Kray S, Sartakov B G, Pérez- Ríos J, Meijer G and Truppe S 2021 New J. Phys. 23 075001
[51] Hutzler N R, Lu H I and Doyle J M 2012 Chem. Rev. 112 4803
[52] Wright S C, Doppelbauer M, Hofsäss S, Schewe H C, Sartakov B, Meijer G and Truppe S 2023 Mol. Phys. 121 e2146541
[53] Galica S E, Aldridge L and Eyler E E 2013 Phys. Rev. A 88 043418
[54] Wei J, Wu D, Dong T J, Zu C Y, Xia Y and Yin J P 2025 Phys. Rev. A 111 013307
[55] Chieda M A and Eyler E E 2012 Phys. Rev. A 86 053415
[56] Shuman E S, Barry J F and DeMille D 2010 Nature 467 820
[57] Williams H J, Truppe S, Hambach M, Caldwell L, Fitch N J, Hinds E A, Sauer B E and Tarbutt M R 2017 New J. Phys. 19 113035
[1] Sub-Doppler cooling of magnesium fluoride molecules
Jin Wei(魏晋), Di Wu(吴迪), Taojing Dong(董涛晶), Chenyu Zu(祖晨宇), Yong Xia(夏勇), and Jianping Yin(印建平). Chin. Phys. B, 2025, 34(6): 063701.
[2] A new search for the variation of fundamental constants using the rovibrational levels and isotope effects of the magnesium fluoride molecule
Di Wu(吴迪), Jin Wei(魏晋), Taojing Dong(董涛晶), Chenyu Zu(祖晨宇), Yong Xia(夏勇), and Jianping Yin(印建平). Chin. Phys. B, 2025, 34(2): 023101.
[3] Formation of high-density cold molecules via electromagnetic trap
Ya-Bing Ji(纪亚兵), Bin Wei(魏斌), Heng-Jiao Guo(郭恒娇), Qing Liu(刘青), Tao Yang(杨涛), Shun-Yong Hou(侯顺永), and Jian-Ping Yin(印建平). Chin. Phys. B, 2022, 31(10): 103201.
[4] A crossed focused vortex beam with application to cold molecules
Meng Xia(夏梦), Yaling Yin(尹亚玲), Chunying Pei(裴春莹), Yuer Ye(叶玉儿), Ruoxi Gu(顾若溪), Kang Yan(严康), Di Wu(吴迪), Yong Xia(夏勇), and Jianping Yin(印建平). Chin. Phys. B, 2021, 30(11): 114202.
[5] Two types of highly efficient electrostatic traps for single loading or multi-loading of polar molecules
Bin Wei(魏斌), Hengjiao Guo(郭恒娇), Yabing Ji(纪亚兵), Shunyong Hou(侯顺永), Jianping Yin(印建平). Chin. Phys. B, 2020, 29(4): 043701.
[6] Theoretical analysis of the coupling between Feshbach states and hyperfine excited states in the creation of 23Na40K molecule
Ya-Xiong Liu(刘亚雄), Bo Zhao(赵博). Chin. Phys. B, 2020, 29(2): 023103.
[7] Generation of high-energy-resolved NH3 molecular beam by a Stark decelerator with 179 stages
Bin Wei(魏斌), Shunyong Hou(侯顺永), Hengjiao Guo(郭恒娇), Yabing Ji(纪亚兵), Shengqiang Li(李胜强), Jianping Yin(印建平). Chin. Phys. B, 2019, 28(5): 053701.
[8] Effect of external magnetic field on the shift of resonant frequency in photoassociation of ultracold Cs atoms
Pengwei Li(李鹏伟), Yuqing Li(李玉清), Guosheng Feng(冯国胜), Jizhou Wu(武寄洲), Jie Ma(马杰), Liantuan Xiao(肖连团), Suotang Jia(贾锁堂). Chin. Phys. B, 2019, 28(1): 013702.
[9] Optical Stark deceleration of neutral molecules from supersonic expansion with a rotating laser beam
Yongcheng Yang(杨永成), Shunyong Hou(侯顺永), Lianzhong Deng(邓联忠). Chin. Phys. B, 2018, 27(5): 053701.
[10] Photoassociation spectra of ultracold 85Rb2 molecule in 0u+ long range state near the 5S1/2+5P1/2 asymptote
Guodong Zhao(赵国栋), Dianqiang Su(苏殿强), Zhonghua Ji(姬中华), Tengfei Meng(孟腾飞), Yanting Zhao(赵延霆), Liantuan Xiao(肖连团), Suotang Jia(贾锁堂). Chin. Phys. B, 2017, 26(8): 083301.
[11] Production of cold CN molecules by photodissociating ICN precursors in brute-force field
Wen-Xia Xu(徐文霞), Yong-Cheng Yang(杨永成), Lian-Zhong Deng(邓联忠). Chin. Phys. B, 2017, 26(5): 053702.
[12] Enhanced electron-positron pair production by frequency chirping in one- and two-color laser pulse fields
Nuriman Abdukerim, Zi-Liang Li(李子良), Bai-Song Xie(谢柏松). Chin. Phys. B, 2017, 26(2): 020301.
[13] Highly sensitive photoassociation spectroscopy of ultracold 23Na133Cs molecular long-range states below the 3S1/2+6P3/2 limit
Yanyan Liu(刘艳艳), Jizhou Wu(武寄洲), Wenliang Liu(刘文良), Xiaofeng Wang(王晓锋), Wenhao Wang(王文浩), Jie Ma(马杰), Liantuan Xiao(肖连团), Suotang Jia(贾锁堂). Chin. Phys. B, 2017, 26(12): 123702.
[14] Microwave-mediated magneto-optical trap for polar molecules
Dizhou Xie(谢笛舟), Wenhao Bu(卜文浩), Bo Yan(颜波). Chin. Phys. B, 2016, 25(5): 053701.
[15] Two-color laser modulation of magnetic Feshbach resonances
Li Jian (李健), Liu Yong (刘勇), Huang Yin (黄寅), Cong Shu-Lin (丛书林). Chin. Phys. B, 2015, 24(8): 080308.
No Suggested Reading articles found!