|
Special Issue:
Featured Column — DATA PAPER
|
|
|
|
State-selective single- and double-electron capture in collisions of low-energy S5+ ions with helium |
| Yixin Fan(樊依鑫)1,2, Dadi Xing(邢大地)2, Shucheng Cui(崔述成)3, Xiaoxia Wang(王小霞)4,†, Junxia Ran(冉俊霞)1,‡, Kaizhao Lin(林楷钊)2, Xubin Zhu(朱旭斌)2,5, Dongmei Zhao(赵冬梅)2, Dalong Guo(郭大龙)2,5, Yong Gao(高永)2,5, Shaofeng Zhang(张少锋)2,5,6, Xiaolong Zhu(朱小龙)2,5,6,§, and Xinwen Ma(马新文)2,5,6 |
1 College of Physics Science and Technology, Hebei University, Baoding 071002, China; 2 Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China; 3 College of Physics and Electronic Engineering, Northwest Normal University, Lanzhou 730070, China; 4 College of Physics, Chendu University of Technology, Chengdu 610059, China; 5 University of Chinese Academy of Sciences, Beijing 100049, China; 6 State Key Laboratory of Heavy Ion Science and Technology, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China |
|
|
|
|
Abstract State-selective single- and double-electron capture processes in collisions of S$^{5+}$ ions with helium at energies ranging from 50.8 keV to 100 keV were investigated using cold target recoil ion momentum spectroscopy (COLTRIMS). $Q$-value spectra and projectile scattering angle distributions were obtained. For single-electron capture, single electron capture into $n = 3$ states of the projectile ion is dominant. As the projectile energy increases, the contribution of single electron capture into $n = 4$ states is observed. Experimental relative cross-sections for single-electron capture into different projectile final states were compared with theoretical predictions based on the molecular orbital close-coupling (MOCC) method. In double-electron capture, two-electron populating into the 3s$^2$3p and 3s3p$^2$ states of projectile dominates. The reaction window calculated from the classical molecular Coulombic barrier model can qualitatively explain the experimental results. The scattering angle distribution of the multi-peak structure of the double-electron capture process is observed. The database is openly available in Science Data Bank at https://doi.org/10.57760/sciencedb.j00113.00233.
|
Received: 22 January 2025
Revised: 26 March 2025
Accepted manuscript online: 11 April 2025
|
|
PACS:
|
34.70.+e
|
(Charge transfer)
|
| |
95.30.Dr
|
(Atomic processes and interactions)
|
|
| Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2022YFA1602500) and the National Natural Science Foundation of China (Grant No. 11974358). |
Corresponding Authors:
Xiaoxia Wang, Junxia Ran, Xiaolong Zhu
E-mail: wangxx@cdut.edu.cn;rjxhbu@hbu.cn;zhuxiaolong@impcas.ac.cn
|
Cite this article:
Yixin Fan(樊依鑫), Dadi Xing(邢大地), Shucheng Cui(崔述成), Xiaoxia Wang(王小霞), Junxia Ran(冉俊霞), Kaizhao Lin(林楷钊), Xubin Zhu(朱旭斌), Dongmei Zhao(赵冬梅), Dalong Guo(郭大龙), Yong Gao(高永), Shaofeng Zhang(张少锋), Xiaolong Zhu(朱小龙), and Xinwen Ma(马新文) State-selective single- and double-electron capture in collisions of low-energy S5+ ions with helium 2025 Chin. Phys. B 34 073402
|
[1] Ullrich J, Moshammer R, Dorner R, Jagutzki O, Mergel V, Schmidt- Bocking H and Spielberger L 1997 J. Phys. B: At. Mol. Opt. Phys. 30 2917 [2] Cravens T E 2002 Science 296 1042 [3] Isler R C 1994 Plasma Phys. Control. Fusion 36 171 [4] Gervais B, Beuve M, Olivera G and Galassi M 2006 Radiat. Phys. Chem. 75 493 [5] Wei B R and Zhang R T 2025 Sci. Sin. Phys. Mech. Astron. 55 250008 [6] Ma X, Zhang S, Wen W, Huang Z, Hu Z, Guo D, Gao J, Najjari B, Xu S, Yan S, Yao K, Zhang R, Gao Y and Zhu X 2022 Chin. Phys. B 31 093401 [7] Zhang R T, Gao J W, Zhang Y W, Guo D L, Gao Y, Zhu X L, Xu J W, Zhao D M, Yan S, Xu S, Zhang S F, Wu Y, Wang J G and Ma X 2023 Phys. Rev. Res. 5 023123 [8] Ma P F, Wang J R, Zhang Z X, Meng T M, Xia Z H, Ren B H, Wei L, Yao K, Xiao J, Zou Y M, Tu B S and Wei B R 2023 Nucl. Sci. Tech. 34 156 [9] Cao T, Meng T, Gao Y, Zhang S F, Zhang R T, Yan S, Zhu X L, Wang J, Ma P, Ren B, Xia Z H, Guo D L, Zhang C J, Lin K Z, Xu S, Wei B and Ma X 2023 Astrophys. J. Suppl. Ser. 266 20 [10] Zhu X B, Xing D D, Lin K Z, Cui S C, Zhu X L, Gao Y, Guo D L, Zhao D M, Zhang S F and Ma X 2024 J. Phys. B: At. Mol. Opt. Phys. 57 045001 [11] Wu Y J, Meng T M, Zhang X W, Tan X, Ma P F, Yin H, Ren B H, Tu B S, Zhang R T, Xiao J, Ma X W, Zou Y M and Wei B R 2024 Acta Phys. Sin. 73 240701 (in Chinese) [12] Lin K Z, Gao Y, Zhu X L, Zhang S F, Cao T, Guo D L, Shan X, Zhao D M, Chen X J and Ma X 2024 Phys. Rev. A 109 052811 [13] Siddiki M A K A, Zhao G P, Liu L and Misra D 2024 Phys. Rev. A 109 032819 [14] Ma M X, Meng T, Tu B, Ma P, Zhang Y W, Liu L, Xiao J, Yao K, Zou Y, Wu Y, Wang J G and Wei B 2024 Phys. Rev. A 110 032806 [15] Zhu X, Zhang S, Gao Y, Guo D, Xu J, Zhang R, Zhao D, Lin K, Zhu X, Xing D, Cui S, Passalidis S, Dubois A and Ma X 2024 Phys. Rev. Lett. 133 173002 [16] Zhu X B, Zhang R T, Zhang C J, Mitrani S, Gu L, Gao Y, Zhang S F and Ma X 2025 Astrophys. J. Suppl. Ser. 277 35 [17] Liu L,Wu Y,Wang J and Janev R 2022 At. Data Nucl. Data Tables 143 101464 [18] Gao J W, Wu Y, Sisourat N, Wang J G and Dubois A 2017 Phys. Rev. A 96 052703 [19] Zhang YW, Gao JW,Wu Y,Wang J G, Sisourat N and Dubois A 2022 Phys. Rev. A 106 042809 [20] Lanzerotti L J, Armstrong T P, Gold R E, Anderson K A, Krimigis S M, Lin R P, Pick M, Roelof E C, Sarris E T, Simnett G M, Maclennan C G, Choo H T and Tappin S J 1992 Science 257 1518 [21] Frankel M, Beiersdorfer P, Brown G V, Gu M F, Kelley R L, Kilbourne C A and Porter F S 2009 Astrophys. J. 702 171 [22] Clark G, Mauk B H, Paranicas C, Kollmann P and Smith H T 2016 J. Geophys. Res. Space Phys. 121 2264 [23] Mifsud D V, Kanuchová Z, Herczku P, Ioppolo S, Juhász Z, Kovács S T S, Mason N J, McCullough R W and Sulik B 2021 Space Sci. Rev. 217 14 [24] Boyarsky A, Ruchayskiy O, Iakubovskyi D and Franse J 2014 Phys. Rev. Lett. 113 251301 [25] Bulbul E, Markevitch M, Foster A, Smith R K, Loewenstein M and Randall S W 2014 Astrophys. J. 789 13 [26] Wilson S M, McLaughlin T K, McCullough R W and Gilbody H B 1990 J. Phys. B: At. Mol. Opt. Phys. 23 2969 [27] Zhao L B, Stancil P C, Gu J P, Hirsch G, Buenker R J, Imai T W and Kimura M 2005 Phys. Rev. A 72 032719 [28] Wilson S M, McLaughlin T K, McCullough R W and Gilbody H B 1990 J. Phys. B: At. Mol. Opt. Phys. 23 1315 [29] Bacchus-Montabonel M 1998 Chem. Phys. 228 181 [30] Labuda M, Tergiman Y, Bacchus-Montabonel M and Sienkiewicz J 2004 Int. J. Mol. Sci. 5 265 [31] Labuda M, Tergiman Y, Bacchus-Montabonel M C and Sienkiewicz J 2004 Chem. Phys. Lett. 394 446 [32] Wang J G, Turner A R, Cooper D L, Schultz D R, Rakovic M J, Fritsch W, Stancil P C and Zygelman B 2002 J. Phys. B: At. Mol. Opt. Phys. 35 3137 [33] Dörner R, Mergel V, Jagutzki O, Spielberger L, Ullrich J, Moshammer R and Schmidt-Böcking H 2000 Phys. Rep. 330 95 [34] Zhu X, Cui S, Xing D, Xu J, Najjari B, Zhao D, Guo D, Gao Y, Zhang R, Su M, Zhang S and Ma X 2024 Chin. Phys. B 33 023401 [35] Niehaus A 1986 J. Phys. B: At. Mol. Phys. 19 2925 [36] Zhu X, Ma X, Li J, Schmidt M, Feng W, Peng H, Xu J, Zschornack G, Liu H, Zhang T, Zhao D, Guo D, Huang Z, Zhou X, Gao Y, Cheng R, Wang H, Yang J and Kang L 2019 Nucl. Instrum. Methods Phys. Res. B 460 224 [37] Ma X, Zhang R T, Zhang S F, Zhu X L, Feng W T, Guo D L, Li B, Liu H P, Li C Y, Wang J G, Yan S C, Zhang P J and Wang Q 2011 Phys. Rev. A 83 052707 [38] Xu JW, Xu C X, Zhang R T, Zhu X L, FengWT, Gu L, Liang G Y, Guo D L, Gao Y, Zhao D M, Zhang S F, Su M G and Ma X 2021 Astrophys. J. Suppl. Ser. 253 13 [39] Yuan H, Xu S, Wang E, Xu J, Gao Y, Zhu X, Guo D, Ma B, Zhao D, Zhang S, Yan S, Zhang R, Gao Y, Xu Z and Ma X 2022 J. Phys. Chem. Lett. 13 7594 [40] Cui S, Xing D, Zhu X, Su M, Gao Y, Guo D, Zhao D, Zhang S, Fu Y and Ma X 2024 Chin. Phys. B 33 073401 [41] Fischer D, Feuerstein B, DuBois R D, Moshammer R, López-Urrutia J R C, Draganić I, Lörch H, Perumal A N and Ullrich J 2002 J. Phys. B: At. Mol. Opt. Phys. 35 1369 [42] Buenker R J and Phillips R A 1985 J. Mol. Struct. THEOCHEM 123 291 [43] Krebs S and Buenker R J 1995 J. Chem. Phys. 103 5613 [44] Zygelman B, Cooper D L, Ford M J, Dalgarno A, Gerratt J and Raimondi M 1992 Phys. Rev. A 46 3846 [45] Bransden B H and McDowell M R C 1992 Charge Exchange and the Theory of Ion-Atom Collisions (Oxford: Oxford University Press) [46] Nolte J L, Stancil P C, Liebermann H P, Buenker R J, Hui Y and Schultz D R 2012 J. Phys. B: At. Mol. Opt. Phys. 45 245202 [47] Wang X X, Wang K, Peng Y G, Liu C H, Liu L, Wu Y, Liebermann H P, Buenker R J and Qu Y Z 2021 Chin. Phys. Lett. 38 113401 |
| No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|