|
|
A new search for the variation of fundamental constants using the rovibrational levels and isotope effects of the magnesium fluoride molecule |
Di Wu(吴迪)1, Jin Wei(魏晋)1, Taojing Dong(董涛晶)1, Chenyu Zu(祖晨宇)1, Yong Xia(夏勇)1,2,3,†, and Jianping Yin(印建平)1,‡ |
1 State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China; 2 Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China; 3 NYU-ECNU Institute of Physics at NYU Shanghai, Shanghai 200062, China |
|
|
Abstract The recently demonstrated methods for cooling and trapping diatomic molecules offer new possibilities for precision searches in fundamental physical theories. Here, we propose to study the variations of the fine-structure constant ($\alpha =e^{2}/(\hslash c)$) and the proton-to-electron mass ratio ($\mu = m_{\rm p}/m_{\rm e}$) with time by taking advantage of the nearly degenerate rovibrational levels in the electronic states of the magnesium fluoride (MgF) molecule. Specifically, due to the cancellation between the fine-structure splitting and the rovibrational intervals in the different MgF natural isotopes, a degeneracy occurs for A$^{2} \Pi_{3 / 2}$ $(v'=0,\, J'=18.5,\,-)$ and A$^{2}\Pi_{1 / 2}$ $(v''=0,\, J''=20.5,\, -)$. We find that using the nearly degenerate energy level of such states can be 10$^{4}$ times more sensitive than using a pure rotational transition to measure the variations of $\alpha $ and $\mu $. To quantify the small gap between A$^{2} \Pi_{3 / 2}$ $(v'=0,\, J'=18.5,\, -)$ and A$^{2} \Pi_{1 / 2}$ $(v''=0,\, J''=20.5,\, -)$, special transitions of choice are feasible: X$^{2} \Sigma_{1 /2}^{+}$ $(v=0,\, J=19.5,\, +)$ to A$^{2}{\Pi }_{3 / 2}$ $(v'=0,\, J'=18.5,\, -)$ and X$^{2} \Sigma_{1 / 2}^{+}$ $(v=0,\, J=19.5,\, +)$ to A$^{2}{\Pi }_{1 / 2}$ $(v''=0,\, J''=20.5,\, -)$. In addition, we estimate the frequency uncertainties caused by the narrow linewidth, Zeeman shift, Stark shift, Doppler broadening and blackbody radiation.
|
Received: 22 July 2024
Revised: 19 November 2024
Accepted manuscript online: 02 December 2024
|
PACS:
|
31.30.Gs
|
(Hyperfine interactions and isotope effects)
|
|
33.15.Pw
|
(Fine and hyperfine structure)
|
|
37.10.Mn
|
(Slowing and cooling of molecules)
|
|
06.20.Jr
|
(Determination of fundamental constants)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 12174115, 11834003, and 91836103). |
Corresponding Authors:
Yong Xia, Jianping Yin
E-mail: yxia@phy.ecnu.edu.cn;jpyin@phy.ecnu.edu.cn
|
Cite this article:
Di Wu(吴迪), Jin Wei(魏晋), Taojing Dong(董涛晶), Chenyu Zu(祖晨宇), Yong Xia(夏勇), and Jianping Yin(印建平) A new search for the variation of fundamental constants using the rovibrational levels and isotope effects of the magnesium fluoride molecule 2025 Chin. Phys. B 34 023101
|
[1] Cairncross W B and Ye J 2019 Nat. Rev. Phys. 1 510 [2] Le D T 2024 Sci. Rep. 14 15610 [3] Stadnik Y V and Flambaum V V 2015 Phys. Rev. Lett. 115 201301 [4] Truppe S, Hendricks R J, Tokunaga S K, Lewandowski H J, Kozlov M G, Henkel C, Hinds E A and Tarbutt M R 2013 Nat. Commun. 4 2600 [5] Hart L and Chluba J 2023 MNRAS 519 3664 [6] Safronova M S, Budker D, DeMille D, Kimball D F J, Derevianko A and Clark C W 2018 Rev. Mod. Phys. 90 025008 [7] Arvanitaki A, Huang J W and Tilburg K V 2015 Phys. Rev. D 91 015015 [8] Hees A, Minazzoli O, Savalle E, Stadnik Y V and Wolf P 2018 Phys. Rev. D 98 064051 [9] Zelevinsky T, Kotochigova S and Ye J 2008 Phys. Rev. Lett. 100 043201 [10] DeMille D, Sainis S, Sage J, Bergeman T, Kotochigova S and Tiesinga E 2008 Phys. Rev. Lett. 100 043202 [11] Shelkovnikov A, Butcher R J, Chardonnet C and Amy-Klein A 2008 Phys. Rev. Lett. 100 150801 [12] Kobayashi J, Ogino A and Inouye S 2019 Nat. Commun. 10 3771 [13] Kajita M 2009 New J. Phys. 11 055010 [14] Rosenband T, Hume D B, Schmidt P O, Chou C W, Brusch A, Lorini L, Oskay W H, Drullinger R E, Fortier T M, Stalnaker J E, Diddams S A, SwannWC, Newbury N R, ItanoWM,Wineland D J and Bergquist J C 2008 Science 319 1808 [15] Schkolnik V, Budker D, Fartmann O, Flambaum V, Hollberg L, Kalaydzhyan T, Kolkowitz S, Krutzik M, Ludlow A and Newbury N 2023 Quantum Sci. Technol. 8 014003 [16] Lange R, Huntemann N, Rahm J M, Sanner C, Shao H, Lipphardt B, Tamm C, Weyers S and Peik E 2021 Phys. Rev. Lett. 126 011102 [17] Jansen P, Xu L H, Kleiner I, Ubachs W and Bethlem H L 2011 Phys. Rev. Lett. 106 100801 [18] Ubachs W, Bagdonaite J, Salumbides E J, Murphy M T and Kaper L 2016 Rev. Mod. Phys. 88 021003 [19] Leefer N, Weber C T M, Cingöz A, Torgerson J R and Budker D 2013 Phys. Rev. Lett. 111 060801 [20] Figueroa N L, Berengut J C, Dzuba V, Flambaum V V, Budker D and Antypas D 2022 Phys. Rev. Lett. 128 073001 [21] Hanneke D, Kuzhan B and Lunstad A 2021 Quantum Sci. Technol. 6 014005 [22] Micheli A, Brennen G K and Zoller P 2006 Nat. Phys. 2 341 [23] Bao Y C, Yu S S, Anderegg L, Chae E, Ketterle W, Ni K K and Doyle J M 2023 Science 382 1138 [24] Ni K K, Rosenband T and Grimes D D 2018 Chem. Sci. 9 6830 [25] Karman T, Tomza M and Pérez-Ríos J 2024 Nat. Phys. 20 722 [26] Anderegg L, Vilas N B, Hallas C, Robichaud P, Jadbabaie A, Doyle J M and Hutzler N R 2023 Science 382 665 [27] Cheuk L W, Anderegg L, Bao Y C, Burchesky S, Yu S S, Ketterle W, Ni K K and Doyle J M 2020 Phys. Rev. Lett. 125 043401 [28] Ye J and Zoller P 2024 Phys. Rev. Lett. 132 190001 [29] Flambaum V V and Kozlov M G 2007 Phys. Rev. Lett. 99 150801 [30] Caldwell L, Roussy T S, Wright T, Cairncross W B, Shagam Y, Ng K B, Schlossberger N, Park S Y, Wang A Z, Ye J and Cornell E A 2023 Phys. Rev. A 108 012804 [31] Beloy K, Kozlov M G, Borschevsky A, Hauser A W, Flambaum V V and Schwerdtfeger P 2011 Phys. Rev. A 83 062514 [32] Beloy K, Borschevsky A, Schwerdtfeger P and Flambaum V V 2010 Phys. Rev. A 82 022106 [33] Ganguly G, Sen A, Mukherjee M and Paul A 2014 Phys. Rev. A 90 012509 [34] Nijs A J, Salumbides E J, Eikema K S E, Ubachs W and Bethlem H L 2011 Phys. Rev. A 84 052509 [35] Hanneke D, Carollo R A and Lane D A 2016 Phys. Rev. A 94 050101 [36] Pašteka L F, Borschevsky A, Flambaum V V and Schwerdtfeger P 2015 Phys. Rev. A 92 012103 [37] Xu S P, Xia M, Yin Y N, Gu R X, Xia Y and Yin J P 2019 J. Chem. Phys. 150 084302 [38] Xu S P, Xia M, Gu R X, Pei C Y, Yang Z H, Xia Y and Yin J P 2019 J. Quant. Spectrosc. Ra. 236 106583 [39] AndersonM A, AllenM D and Ziurys LM1994 Astrophys. J. 425 L53 [40] Xu S P, Xia M, Gu R X, Yin Y N, Xu L, Xia Y and Yin J P 2019 Phys. Rev. A 99 033408 [41] Yan K, Gu R X, Wu D, Wei J, Xia Y and Yin J P 2022 Front. Phys. 17 42502 [42] Ji Y B, Wei B, Guo H J, Liu Q, Yang T, Hou S Y and Yin J P 2022 Chin. Phys. B 31 103201 [43] Bao Z B, Wang D F, Shao X P, Huang Y X and Yang X H 2023 Chin. Phys. B 32 123302 [44] Ludlow A D, BoydMM, Ye J, Peik E and Schmidt P O 2015 Rev. Mod. Phys. 87 637 [45] Kajita M, Gopakumar G, Abe M, Hada M and Keller M 2014 Phys. Rev. A 89 032509 [46] Brown J M and Carrington A 2003 Rotational Spectroscopy of Diatomic Molecules (1st edn.) (Cambridge University Press, Cambridge) [47] Barrow R F and Beale J R 1967 Proc. Phys. Soc. 91 483 [48] Watson J K G 1980 J. Mol. Spectrosc. 80 411 [49] Dunham J L 1932 Phys. Rev. 41 721 [50] Barnes M, Merer A J and Metha G F 1995 J. Chem. Phys. 103 8360 [51] Brown J M, Kopp I, Malmberg C and Rydh B 1978 Phys. Scr. 17 55 [52] Gu R X, Xia M, Yan K, Wu D, Wei J, Xu L, Xia Y and Yin J P 2022 J. Quant. Spectrosc. Ra. 278 108015 [53] Chin C, Flambaum V V and KozlovMG 2009 New J. Phys. 11 055048 [54] Li R, Wu Y L, Rui Y, Li B, Jiang Y Y, Ma L S and Wu H B 2020 Phys. Rev. Lett. 124 063002 [55] Townes C H and Schawlow A L 2012 Microwave Spectroscopy (2nd edn.) (New York: Dover Publications) p. 248249 [56] Norrgard E B, Eckel S P, Holloway C L and Shirley E L 2021 New J. Phys. 23 033037 [57] Vanhaecke N and Dulieu O 2007 Mol. Phys. 105 1723 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|