Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(2): 023101    DOI: 10.1088/1674-1056/ad990e
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

A new search for the variation of fundamental constants using the rovibrational levels and isotope effects of the magnesium fluoride molecule

Di Wu(吴迪)1, Jin Wei(魏晋)1, Taojing Dong(董涛晶)1, Chenyu Zu(祖晨宇)1, Yong Xia(夏勇)1,2,3,†, and Jianping Yin(印建平)1,‡
1 State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China;
2 Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China;
3 NYU-ECNU Institute of Physics at NYU Shanghai, Shanghai 200062, China
Abstract  The recently demonstrated methods for cooling and trapping diatomic molecules offer new possibilities for precision searches in fundamental physical theories. Here, we propose to study the variations of the fine-structure constant ($\alpha =e^{2}/(\hslash c)$) and the proton-to-electron mass ratio ($\mu = m_{\rm p}/m_{\rm e}$) with time by taking advantage of the nearly degenerate rovibrational levels in the electronic states of the magnesium fluoride (MgF) molecule. Specifically, due to the cancellation between the fine-structure splitting and the rovibrational intervals in the different MgF natural isotopes, a degeneracy occurs for A$^{2} \Pi_{3 / 2}$ $(v'=0,\, J'=18.5,\,-)$ and A$^{2}\Pi_{1 / 2}$ $(v''=0,\, J''=20.5,\, -)$. We find that using the nearly degenerate energy level of such states can be 10$^{4}$ times more sensitive than using a pure rotational transition to measure the variations of $\alpha $ and $\mu $. To quantify the small gap between A$^{2} \Pi_{3 / 2}$ $(v'=0,\, J'=18.5,\, -)$ and A$^{2} \Pi_{1 / 2}$ $(v''=0,\, J''=20.5,\, -)$, special transitions of choice are feasible: X$^{2} \Sigma_{1 /2}^{+}$ $(v=0,\, J=19.5,\, +)$ to A$^{2}{\Pi }_{3 / 2}$ $(v'=0,\, J'=18.5,\, -)$ and X$^{2} \Sigma_{1 / 2}^{+}$ $(v=0,\, J=19.5,\, +)$ to A$^{2}{\Pi }_{1 / 2}$ $(v''=0,\, J''=20.5,\, -)$. In addition, we estimate the frequency uncertainties caused by the narrow linewidth, Zeeman shift, Stark shift, Doppler broadening and blackbody radiation.
Keywords:  cold molecule      proton-to-electron mass ratio      precision measurement  
Received:  22 July 2024      Revised:  19 November 2024      Accepted manuscript online:  02 December 2024
PACS:  31.30.Gs (Hyperfine interactions and isotope effects)  
  33.15.Pw (Fine and hyperfine structure)  
  37.10.Mn (Slowing and cooling of molecules)  
  06.20.Jr (Determination of fundamental constants)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 12174115, 11834003, and 91836103).
Corresponding Authors:  Yong Xia, Jianping Yin     E-mail:  yxia@phy.ecnu.edu.cn;jpyin@phy.ecnu.edu.cn

Cite this article: 

Di Wu(吴迪), Jin Wei(魏晋), Taojing Dong(董涛晶), Chenyu Zu(祖晨宇), Yong Xia(夏勇), and Jianping Yin(印建平) A new search for the variation of fundamental constants using the rovibrational levels and isotope effects of the magnesium fluoride molecule 2025 Chin. Phys. B 34 023101

[1] Cairncross W B and Ye J 2019 Nat. Rev. Phys. 1 510
[2] Le D T 2024 Sci. Rep. 14 15610
[3] Stadnik Y V and Flambaum V V 2015 Phys. Rev. Lett. 115 201301
[4] Truppe S, Hendricks R J, Tokunaga S K, Lewandowski H J, Kozlov M G, Henkel C, Hinds E A and Tarbutt M R 2013 Nat. Commun. 4 2600
[5] Hart L and Chluba J 2023 MNRAS 519 3664
[6] Safronova M S, Budker D, DeMille D, Kimball D F J, Derevianko A and Clark C W 2018 Rev. Mod. Phys. 90 025008
[7] Arvanitaki A, Huang J W and Tilburg K V 2015 Phys. Rev. D 91 015015
[8] Hees A, Minazzoli O, Savalle E, Stadnik Y V and Wolf P 2018 Phys. Rev. D 98 064051
[9] Zelevinsky T, Kotochigova S and Ye J 2008 Phys. Rev. Lett. 100 043201
[10] DeMille D, Sainis S, Sage J, Bergeman T, Kotochigova S and Tiesinga E 2008 Phys. Rev. Lett. 100 043202
[11] Shelkovnikov A, Butcher R J, Chardonnet C and Amy-Klein A 2008 Phys. Rev. Lett. 100 150801
[12] Kobayashi J, Ogino A and Inouye S 2019 Nat. Commun. 10 3771
[13] Kajita M 2009 New J. Phys. 11 055010
[14] Rosenband T, Hume D B, Schmidt P O, Chou C W, Brusch A, Lorini L, Oskay W H, Drullinger R E, Fortier T M, Stalnaker J E, Diddams S A, SwannWC, Newbury N R, ItanoWM,Wineland D J and Bergquist J C 2008 Science 319 1808
[15] Schkolnik V, Budker D, Fartmann O, Flambaum V, Hollberg L, Kalaydzhyan T, Kolkowitz S, Krutzik M, Ludlow A and Newbury N 2023 Quantum Sci. Technol. 8 014003
[16] Lange R, Huntemann N, Rahm J M, Sanner C, Shao H, Lipphardt B, Tamm C, Weyers S and Peik E 2021 Phys. Rev. Lett. 126 011102
[17] Jansen P, Xu L H, Kleiner I, Ubachs W and Bethlem H L 2011 Phys. Rev. Lett. 106 100801
[18] Ubachs W, Bagdonaite J, Salumbides E J, Murphy M T and Kaper L 2016 Rev. Mod. Phys. 88 021003
[19] Leefer N, Weber C T M, Cingöz A, Torgerson J R and Budker D 2013 Phys. Rev. Lett. 111 060801
[20] Figueroa N L, Berengut J C, Dzuba V, Flambaum V V, Budker D and Antypas D 2022 Phys. Rev. Lett. 128 073001
[21] Hanneke D, Kuzhan B and Lunstad A 2021 Quantum Sci. Technol. 6 014005
[22] Micheli A, Brennen G K and Zoller P 2006 Nat. Phys. 2 341
[23] Bao Y C, Yu S S, Anderegg L, Chae E, Ketterle W, Ni K K and Doyle J M 2023 Science 382 1138
[24] Ni K K, Rosenband T and Grimes D D 2018 Chem. Sci. 9 6830
[25] Karman T, Tomza M and Pérez-Ríos J 2024 Nat. Phys. 20 722
[26] Anderegg L, Vilas N B, Hallas C, Robichaud P, Jadbabaie A, Doyle J M and Hutzler N R 2023 Science 382 665
[27] Cheuk L W, Anderegg L, Bao Y C, Burchesky S, Yu S S, Ketterle W, Ni K K and Doyle J M 2020 Phys. Rev. Lett. 125 043401
[28] Ye J and Zoller P 2024 Phys. Rev. Lett. 132 190001
[29] Flambaum V V and Kozlov M G 2007 Phys. Rev. Lett. 99 150801
[30] Caldwell L, Roussy T S, Wright T, Cairncross W B, Shagam Y, Ng K B, Schlossberger N, Park S Y, Wang A Z, Ye J and Cornell E A 2023 Phys. Rev. A 108 012804
[31] Beloy K, Kozlov M G, Borschevsky A, Hauser A W, Flambaum V V and Schwerdtfeger P 2011 Phys. Rev. A 83 062514
[32] Beloy K, Borschevsky A, Schwerdtfeger P and Flambaum V V 2010 Phys. Rev. A 82 022106
[33] Ganguly G, Sen A, Mukherjee M and Paul A 2014 Phys. Rev. A 90 012509
[34] Nijs A J, Salumbides E J, Eikema K S E, Ubachs W and Bethlem H L 2011 Phys. Rev. A 84 052509
[35] Hanneke D, Carollo R A and Lane D A 2016 Phys. Rev. A 94 050101
[36] Pašteka L F, Borschevsky A, Flambaum V V and Schwerdtfeger P 2015 Phys. Rev. A 92 012103
[37] Xu S P, Xia M, Yin Y N, Gu R X, Xia Y and Yin J P 2019 J. Chem. Phys. 150 084302
[38] Xu S P, Xia M, Gu R X, Pei C Y, Yang Z H, Xia Y and Yin J P 2019 J. Quant. Spectrosc. Ra. 236 106583
[39] AndersonM A, AllenM D and Ziurys LM1994 Astrophys. J. 425 L53
[40] Xu S P, Xia M, Gu R X, Yin Y N, Xu L, Xia Y and Yin J P 2019 Phys. Rev. A 99 033408
[41] Yan K, Gu R X, Wu D, Wei J, Xia Y and Yin J P 2022 Front. Phys. 17 42502
[42] Ji Y B, Wei B, Guo H J, Liu Q, Yang T, Hou S Y and Yin J P 2022 Chin. Phys. B 31 103201
[43] Bao Z B, Wang D F, Shao X P, Huang Y X and Yang X H 2023 Chin. Phys. B 32 123302
[44] Ludlow A D, BoydMM, Ye J, Peik E and Schmidt P O 2015 Rev. Mod. Phys. 87 637
[45] Kajita M, Gopakumar G, Abe M, Hada M and Keller M 2014 Phys. Rev. A 89 032509
[46] Brown J M and Carrington A 2003 Rotational Spectroscopy of Diatomic Molecules (1st edn.) (Cambridge University Press, Cambridge)
[47] Barrow R F and Beale J R 1967 Proc. Phys. Soc. 91 483
[48] Watson J K G 1980 J. Mol. Spectrosc. 80 411
[49] Dunham J L 1932 Phys. Rev. 41 721
[50] Barnes M, Merer A J and Metha G F 1995 J. Chem. Phys. 103 8360
[51] Brown J M, Kopp I, Malmberg C and Rydh B 1978 Phys. Scr. 17 55
[52] Gu R X, Xia M, Yan K, Wu D, Wei J, Xu L, Xia Y and Yin J P 2022 J. Quant. Spectrosc. Ra. 278 108015
[53] Chin C, Flambaum V V and KozlovMG 2009 New J. Phys. 11 055048
[54] Li R, Wu Y L, Rui Y, Li B, Jiang Y Y, Ma L S and Wu H B 2020 Phys. Rev. Lett. 124 063002
[55] Townes C H and Schawlow A L 2012 Microwave Spectroscopy (2nd edn.) (New York: Dover Publications) p. 248249
[56] Norrgard E B, Eckel S P, Holloway C L and Shirley E L 2021 New J. Phys. 23 033037
[57] Vanhaecke N and Dulieu O 2007 Mol. Phys. 105 1723
[1] Micron-sized fiber diamond probe for quantum precision measurement of microwave magnetic field
Wen-Tao Lu(卢文韬), Sheng-Kai Xia(夏圣开), Ai-Qing Chen(陈爱庆), Kang-Hao He(何康浩), Zeng-Bo Xu(许增博), Yi-Han Chen(陈艺涵), Yang Wang(汪洋), Shi-Yu Ge(葛仕宇), Si-Han An(安思瀚), Jian-Fei Wu(吴建飞), Yi-Han Ma(马艺菡), and Guan-Xiang Du(杜关祥). Chin. Phys. B, 2024, 33(8): 080305.
[2] Micron-resolved quantum precision measurement of magnetic field at the Tesla level
Si-Han An(安思瀚), Shi-Yu Ge(葛仕宇), Wen-Tao Lu(卢文韬), Guo-Bin Chen(陈国彬), Sheng-Kai Xia(夏圣开), Ai-Qing Chen(陈爱庆), Cheng-Kun Wang(王成坤), Lin-Yan Yu(虞林嫣), Zhi-Qiang Zhang(张致强), Yang Wang(汪洋), Gui-Jin Tang(唐贵进), Hua-Fu Cheng(程华富), and Guan-Xiang Du(杜关祥). Chin. Phys. B, 2024, 33(12): 120305.
[3] Determining the tilt of the Raman laser beam using an optical method for atom gravimeters
Hua-Qing Luo(骆华清), Yao-Yao Xu(徐耀耀), Jia-Feng Cui(崔嘉丰), Xiao-Bing Deng(邓小兵), Min-Kang Zhou(周敏康), Xiao-Chun Duan(段小春), and Zhong-Kun Hu(胡忠坤). Chin. Phys. B, 2024, 33(12): 123701.
[4] Precision measurement and suppression of low-frequency noise in a current source with double-resonance alignment magnetometers
Jintao Zheng(郑锦韬), Yang Zhang(张洋), Zaiyang Yu(鱼在洋),Zhiqiang Xiong(熊志强), Hui Luo(罗晖), and Zhiguo Wang(汪之国). Chin. Phys. B, 2023, 32(4): 040601.
[5] Quantum-enhanced optical precision measurement assisted by low-frequency squeezed vacuum states
Guohui Kang(康国辉), Jinxia Feng(冯晋霞), Lin Cheng(程琳), Yuanji Li(李渊骥), and Kuanshou Zhang(张宽收). Chin. Phys. B, 2023, 32(10): 104204.
[6] New designed helical resonator to improve measurement accuracy of magic radio frequency
Tian Guo(郭天), Peiliang Liu(刘培亮), and Chaohong Lee(李朝红). Chin. Phys. B, 2022, 31(9): 093201.
[7] Formation of high-density cold molecules via electromagnetic trap
Ya-Bing Ji(纪亚兵), Bin Wei(魏斌), Heng-Jiao Guo(郭恒娇), Qing Liu(刘青), Tao Yang(杨涛), Shun-Yong Hou(侯顺永), and Jian-Ping Yin(印建平). Chin. Phys. B, 2022, 31(10): 103201.
[8] Preparation of a two-state mixture of ultracold fermionic atoms with balanced population subject to the unstable magnetic field
Donghao Li(李东豪), Lianghui Huang(黄良辉), Guoqi Bian(边国旗), Jie Miao(苗杰), Liangchao Chen(陈良超), Zengming Meng(孟增明), Wei Han(韩伟), and Pengjun Wang(王鹏军). Chin. Phys. B, 2021, 30(9): 090303.
[9] A crossed focused vortex beam with application to cold molecules
Meng Xia(夏梦), Yaling Yin(尹亚玲), Chunying Pei(裴春莹), Yuer Ye(叶玉儿), Ruoxi Gu(顾若溪), Kang Yan(严康), Di Wu(吴迪), Yong Xia(夏勇), and Jianping Yin(印建平). Chin. Phys. B, 2021, 30(11): 114202.
[10] Improve the performance of interferometer with ultra-cold atoms
Xiangyu Dong(董翔宇), Shengjie Jin(金圣杰), Hongmian Shui(税鸿冕), Peng Peng(彭鹏), and Xiaoji Zhou(周小计). Chin. Phys. B, 2021, 30(1): 014210.
[11] Precision measurements with cold atoms and trapped ions
Qiuxin Zhang(张球新), Yirong Wang(王艺蓉), Chenhao Zhu(朱晨昊), Yuxin Wang(王玉欣), Xiang Zhang(张翔), Kuiyi Gao(高奎意), Wei Zhang(张威). Chin. Phys. B, 2020, 29(9): 093203.
[12] Movable precision gravimeters based on cold atom interferometry
Jiong-Yang Zhang(张炯阳), Le-Le Chen(陈乐乐), Yuan Cheng(程源), Qin Luo(罗覃), Yu-Biao Shu(舒玉彪), Xiao-Chun Duan(段小春), Min-Kang Zhou(周敏康), Zhong-Kun Hu(胡忠坤). Chin. Phys. B, 2020, 29(9): 093702.
[13] Two types of highly efficient electrostatic traps for single loading or multi-loading of polar molecules
Bin Wei(魏斌), Hengjiao Guo(郭恒娇), Yabing Ji(纪亚兵), Shunyong Hou(侯顺永), Jianping Yin(印建平). Chin. Phys. B, 2020, 29(4): 043701.
[14] Theoretical analysis of the coupling between Feshbach states and hyperfine excited states in the creation of 23Na40K molecule
Ya-Xiong Liu(刘亚雄), Bo Zhao(赵博). Chin. Phys. B, 2020, 29(2): 023103.
[15] Generation of high-energy-resolved NH3 molecular beam by a Stark decelerator with 179 stages
Bin Wei(魏斌), Shunyong Hou(侯顺永), Hengjiao Guo(郭恒娇), Yabing Ji(纪亚兵), Shengqiang Li(李胜强), Jianping Yin(印建平). Chin. Phys. B, 2019, 28(5): 053701.
No Suggested Reading articles found!