Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(5): 053701    DOI: 10.1088/1674-1056/28/5/053701
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

Generation of high-energy-resolved NH3 molecular beam by a Stark decelerator with 179 stages

Bin Wei(魏斌)1, Shunyong Hou(侯顺永)1, Hengjiao Guo(郭恒娇)1, Yabing Ji(纪亚兵)1, Shengqiang Li(李胜强)2, Jianping Yin(印建平)1
1 State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062, China;
2 School of New Energy and Electronic Engineering, Yancheng Teachers University, Yancheng 224051, China
Abstract  We demonstrate the production of cold, slow NH3 molecules from a supersonic NH3 molecular beam using our electrostatic Stark decelerator consisting of 179 slowing stages. By using this long Stark decelerator, a supersonic NH3 molecular beam can be easily decelerated to trappable velocities. Here we present two modes for operating the Stark decelerator to slow the supersonic NH3 molecules. The first is the normal mode, where all 179 stages are used to decelerate molecules, and it allows decelerating the NH3 molecular beam from 333 m/s to 18 m/s, with a final temperature of 29.2 mK. The second is the deceleration-bunch mode, which allows us to decelerate the supersonic NH3 beam from 333 m/s to 24 m/s, with a final temperature of 2.9 mK. It is clear that the second mode promises to produce colder (high-energy-resolution) molecular samples than the normal mode. Three-dimensional Monte Carlo simulations are also performed for the experiments and they show a good agreement with the observed results. The deceleration-bunch operation mode presented here can find applications in the fields of cold collisions, high-resolution spectroscopy, and precision measurements.
Keywords:  Stark deceleration      molecular beams      cold molecules  
Received:  05 January 2019      Revised:  08 March 2019      Accepted manuscript online: 
PACS:  37.20.+j (Atomic and molecular beam sources and techniques)  
  37.10.Mn (Slowing and cooling of molecules)  
  32.60.+i (Zeeman and Stark effects)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 91536218, 11034002, 11274114, 11504112, and 11504318), the National Basic Research Program of China (Grant No. 2011CB921602), the Fundamental Research Funds for the Central Universities, China, Shanghai Pujiang Talents Plan, China (Grant No. 18PJ1403100), and Exploration Funds for the Shanghai Natural Science Foundation, China (Grant No. 18ZR1412700).
Corresponding Authors:  Jianping Yin     E-mail:  jpyin@phy.ecnu.edu.cn

Cite this article: 

Bin Wei(魏斌), Shunyong Hou(侯顺永), Hengjiao Guo(郭恒娇), Yabing Ji(纪亚兵), Shengqiang Li(李胜强), Jianping Yin(印建平) Generation of high-energy-resolved NH3 molecular beam by a Stark decelerator with 179 stages 2019 Chin. Phys. B 28 053701

[1] Carr L D, DeMille D, Krems R V and Ye J 2009 New J. Phys. 11 055049
[2] Bell M T and Softley T P 2009 Mol. Phys. 107 99
[3] Gilijamse J J, Hoekstra S, van de Meerakker S Y T, Groenenboom G C and Meijer G 2006 Science 313 1617
[4] Sawyer B C, Stuhl B K, Yeo M, Tscherbul T V, Hummon M T, Xia Y, Klos J, Patterson D, Doyle J M and Ye J 2011 Phys. Chem. Chem. Phys. 13 19059
[5] Kirste M, Wang X G, Schewe H C, Meijer G, Liu K, van der Avoird A, Janssen L M C, Gubbels K B, Groenenboom G C and van de Meerakker S Y T 2012 Science 338 1060
[6] Willitsch S, Bell M T, Gingell A D, Procter S R and Softley T P 2008 Phys. Rev. Lett. 100 043203
[7] Bell M T, Gingell A D, Oldham J M, Softley T P and Willitsch S 2009 Faraday Discuss. 142 73
[8] Ospelkaus S, Ni K K, Wang D, de Miranda M H G, Neyenhuis B, Quéméner G, Julienne P S, Bohn J L, Jin D S and Ye J 2010 Science 327 853
[9] Berteloite C, Lara M, Bergeat A, Le Picard S D, Dayou F, Hickson K M, Canosa A, Naulin C, Launay J M, Sims I R and Costes M 2010 Phys. Rev. Lett. 105 203201
[10] van Veldhoven J, Küpper J, Bethlem H L, Sartakov B, van Roij A J A and Meijer G 2004 Eur. J. Phys. D 31 337
[11] Hudson E R, Lewandowski H J, Sawyer B C and Ye J 2006 Phys. Rev. Lett. 96 143004
[12] Hudson J J, Sauer B E, Tarbutt M R and Hinds E A 2002 Phys. Rev. Lett. 89 023003
[13] Collaboration A C M E 2014 Science 343 269
[14] Cairncross W B, Gresh D N, Grau M, Cossel K C, Roussy T S, Ni Y, Zhou Y, Ye J and Cornell E A 2017 Phys. Rev. Lett. 119 153001
[15] Weinstein J D, deCarvalho R, Guillet T, Friedrich B and Doyle J M 1998 Nature 395 148
[16] Bethlem H L, Berden G and Meijer G 1999 Phys. Rev. Lett. 83 1558
[17] Vanhaecke N, Meier U, Andrist M, Meier B H and Merkt F 2007 Phys. Rev. A 75 031402(R)
[18] Narevicius E, Libson A, Parthey C G, Chavez I, Narevicius J, Even U and Raizen M G 2008 Phys. Rev. A 77 051401(R)
[19] Fulton R, Bishop A I and Barker P F 2004 Phys. Rev. Lett. 93 243004
[20] Yamakita Y, Procter S R, Goodgame A L, Softley T P and Merkt F 2004 J. Chem. Phys. 121 1419
[21] Hogan S D, Seiler Ch and Merkt F 2009 Phys. Rev. Lett. 103 123001
[22] Shuman E S, Barry J F and DeMille D 2010 Nature 467 820
[23] Hummon M T, Yeo M, Stuhl B K, Collopy A L, Xia Y and Ye J 2013 Phys. Rev. Lett. 110 143001
[24] Zhelyazkova V, Cournol A, Wall T E, Matsushima A, Hudson J J, Hinds E A, Tarbutt M R and Sauer B E 2014 Phys. Rev. A 89 053416
[25] Lim J, Almond J R, Trigatzis M A, Devlin J A, Fitch N J, Sauer B E, Tarbutt M R and Hinds E A 2018 Phys. Rev. Lett. 120 123201
[26] Xu L, Yin Y, Wei B, Xia Y and Yin J 2016 Phys. Rev. A 93 013408
[27] Prehn A, Ibrügger M, Glöckner R, Rempe G and Zeppenfeld M 2016 Phys. Rev. Lett. 116 063005
[28] Bethlem H L, Berden G, Crompvoets F M H, Jongma R T, van Roij A J A and Meijer G 2000 Nature 406 491
[29] Bethlem H L, Crompvoets F M H, Jongma R T, van de Meerakker S Y T and Meijer G 2002 Phys. Rev. A 65 053416
[30] Bochinski J R, Hudson E R, Lewandowski H J, Meijer G and Ye J 2003 Phys. Rev. Lett. 91 243001
[31] van de Meerakker S Y T, Labazan I, Hoekstra S, Küpper J and Meijer G 2006 J. Phys. B: At. Mol. Opt. Phys. 39 S1077
[32] Hudson E R, Ticknor C, Sawyer B C, Taatjes C A, Lewandowski H J, Bochinski J R, Bohn J L and Ye J 2006 Phys. Rev. A 73 063404
[33] Jung S, Tiemann G and Lisdat C 2006 Phys. Rev. A 74 040701(R)
[34] Tokunaga S K, Dyne J M, Hinds E A and Tarbutt M R 2009 New J. Phys. 11 055038
[35] Wall T E, Kanem J F, Dyne J M, Hudson J J, Sauer B E, Hinds E A and Tarbutt M R 2011 Phys. Chem. Chem. Phys. 13 18991
[36] Tarbutt M R, Bethlem H L, Hudson J J, Ryabov V L, Ryzhov V A, Sauer B E, Meijer G and Hinds E A 2004 Phys. Rev. Lett. 92 173002
[37] Wohlfart K, Grätz F, Filsinger F, Haak H, Meijer G and Küpper J 2008 Phys. Rev. A 77 031404(R)
[38] Wang X, Kirste M, Meijer G and van de Meerakker S Y T 2013 Z. Phys. Chem. 227 1595
[39] van den Berg J E, Mathavan S C, Meinema C, Nauta J, Nijbroek T H, Jungmann K, Bethlem H L and Hoekstra S 2014 J. Mol. Spectrosc. 300 22
[40] van de Meerakker S Y T, Smeets P H M, Vanhaecke N, Jongma R T and Meijer G 2005 Phys. Rev. Lett. 94 023004
[41] Quintero-Pérez M, Jansen P, Wall T E, van den Berg J E, Hoekstra S and Bethlem H L 2013 Phys. Rev. Lett. 110 133003
[42] Cheng C, van der Poel A P P, Jansen P, Quintero-Pérez M, Wall T E, Ubachs W and Bethlem H L 2016 Phys. Rev. Lett. 117 253201
[43] Bethlem H L, van Roij A J A, Jongma R T and Meijer G 2002 Phys. Rev. Lett. 88 133003
[44] Meek S A, Conrad H and Meijer G 2009 Science 324 1699
[45] Osterwalder A, Meek S A, Hammer G, Haak H and Meijer G 2010 Phys. Rev. A 81 051401(R)
[46] Meek S A, Parsons M F, Heyne G, Platschkowski V, Haak H, Meijer G and Osterwalder A 2011 Rev. Sci. Instrum. 82 093108
[47] Hou S, Wang Q, Deng L and Yin J 2016 J. Phys. B: At. Mol. Opt. Phys. 49 065301
[48] Shyur Y, Bossert J A and Lewandowski H J 2018 J. Phys. B: At. Mol. Opt. Phys. 51 165101
[49] Wang Q, Hou S, Xu L and Yin J 2016 Phys. Chem. Chem. Phys. 18 5432
[50] Foreman P 1985 Proc. IEEE 73 1181
[51] Gordon J P, Zeiger H J and Townes C H 1954 Phys. Rev. 95 282
[52] Gunther-Mohr G R, White R L, Schawlow A L, Good W E and Coles D K 1954 Phys. Rev. 94 1184
[53] Gordon J P, Zeiger H J and Townes C H 1955 Phys. Rev. 99 1264
[54] Shimoda K, Wang T C and Townes C H 1956 Phys. Rev. 102 1308
[55] Kukolich S G 1967 Phys. Rev. 156 83
[56] Bethlem H L, Kajita M, Sartakov B, Meijer G and Ubachs W 2008 Eur. Phys. J. Spec. Top. 163 55
[57] Jansen P, Bethlem H L and Ubachs W 2014 J. Chem. Phys. 140 010901
[58] Gubbels K B, van de Meerakker S Y T, Groenenboom G C, Meijer G and van der Avoird A 2012 J. Chem. Phys. 136 074301
[59] Bickes Jr R W, Duquette G, van den Meijdenberg C J N, Rulis A M, Scoles G and Smith K M 1975 J. Phys. B: At. Mol. Phys. 8 3034
[60] Jansen P, Quintero-Pérez M, Wall T E, van den Berg J E, Hoekstra S and Bethlem H L 2013 Phys. Rev. A 88 043424
[61] van de Meerakker S Y T, Bethlem H L, Vanhaecke N and Meijer G 2012 Chem. Rev. 112 4828
[62] Hudson E R, Bochinski J R, Lewandowski H J, Sawyer B C and Ye J 2004 Eur. Phys. J. D 31 351
[63] Parazzoli L P, Fitch N, Lobser D S and Lewandowski H J 2009 New J. Phys. 11 055031
[64] Herzberg G and Spinks J W T 1950 Molecular Spectra and Molecular Structure I. Spectra of Diatomic Molecules (New York: D. Van Nostrand Company Inc.) p. 124
[65] Gandhi S R and Bernstein R B 1987 J. Chem. Phys. 87 6457
[66] Heiner C E 2009 A Molecular Synchrotron (Ph. D. Dissertation) (Berlin: Fritz-Haber-Institut der Max-Planck-Gesellschaft)
[1] Formation of high-density cold molecules via electromagnetic trap
Ya-Bing Ji(纪亚兵), Bin Wei(魏斌), Heng-Jiao Guo(郭恒娇), Qing Liu(刘青), Tao Yang(杨涛), Shun-Yong Hou(侯顺永), and Jian-Ping Yin(印建平). Chin. Phys. B, 2022, 31(10): 103201.
[2] Two types of highly efficient electrostatic traps for single loading or multi-loading of polar molecules
Bin Wei(魏斌), Hengjiao Guo(郭恒娇), Yabing Ji(纪亚兵), Shunyong Hou(侯顺永), Jianping Yin(印建平). Chin. Phys. B, 2020, 29(4): 043701.
[3] Laser-assisted Stark deceleration of CaF in its rovibronic ground (high-field-seeking) state
Yuefeng Gu(顾跃凤), Kai Chen(陈凯), Yunxia Huang(黄云霞), Xiaohua Yang(杨晓华). Chin. Phys. B, 2019, 28(4): 043702.
[4] Optical Stark deceleration of neutral molecules from supersonic expansion with a rotating laser beam
Yongcheng Yang(杨永成), Shunyong Hou(侯顺永), Lianzhong Deng(邓联忠). Chin. Phys. B, 2018, 27(5): 053701.
[5] Production of cold CN molecules by photodissociating ICN precursors in brute-force field
Wen-Xia Xu(徐文霞), Yong-Cheng Yang(杨永成), Lian-Zhong Deng(邓联忠). Chin. Phys. B, 2017, 26(5): 053702.
[6] Microwave-mediated magneto-optical trap for polar molecules
Dizhou Xie(谢笛舟), Wenhao Bu(卜文浩), Bo Yan(颜波). Chin. Phys. B, 2016, 25(5): 053701.
[7] High-resolution photoassociation spectroscopy of ultracold Cs2 long-range 0g- state:The external well potential depth
Liu Wen-Liang (刘文良), Wu Ji-Zhou (武寄洲), Ma Jie (马杰), Xiao Lian-Tuan (肖连团), Jia Suo-Tang (贾锁堂). Chin. Phys. B, 2014, 23(1): 013301.
[8] High resolution photoassociation spectra of an ultracold Cs2 long-range 0u+ (6S1/2+6P1/2) state
Chen Peng (陈鹏), Li Yu-Qing (李玉清), Zhang Yi-Chi (张一驰), Wu Ji-Zhou (武寄洲), Ma Jie (马杰), Xiao Lian-Tuan (肖连团), Jia Suo-Tang (贾锁堂). Chin. Phys. B, 2013, 22(9): 093301.
[9] Suppressing the weakly bound states in the photoassociation dynamics by a frequency cut-off laser pulse
Lin Feng(林峰), Zhang Wei(张为), Zhao Ze-Yu(赵泽宇), and Cong Shu-Lin(丛书林) . Chin. Phys. B, 2012, 21(7): 073203.
[10] Cold cesium molecules produced directly in a magneto–optical trap
Zhang Hong-Shan(张洪山), Ji Zhong-Hua(姬中华), Yuan Jin-Peng(元晋鹏), Zhao Yan-Ting(赵延霆), Ma Jie(马杰), Wang Li-Rong(汪丽蓉), Xiao Lian-Tuan(肖连团), and Jia Suo-Tang(贾锁堂) . Chin. Phys. B, 2011, 20(12): 123702.
[11] Deceleration of a continuous-wave (CW) molecular beam with a single quasi-CW semi-Gaussian laser beam
Yin Ya-Ling(尹亚玲), Xia Yong(夏勇), and Yin Jian-Ping(印建平). Chin. Phys. B, 2008, 17(10): 3672-3677.
No Suggested Reading articles found!