| ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS |
Prev
Next
|
|
|
Tunable magnomechanically and optomechanically induced transparency in a cavity opto-magnomechanical system |
| Ke Di(邸克)1,3, Huarong Xia(夏华容)1, Wenting Diao(刁文婷)2, Chunxiao Cai(蔡春晓)2, Wenhai Yang(杨文海)2, Yulian Qin(秦瑜莲)1, Ziting Liao(廖子婷)1, Yucan He(何钰灿)1, and Jiajia Du(杜佳佳)1,† |
1 Chongqing University of Posts and Telecommunications, Chongqing 400065, China; 2 Xi'an Branch of China Academy of Space Technology, State Key Laboratory of Millimeter Waves, Xi'an 710100, China; 3 State Key Laboratory of Quantum Optics and Quantum Optics Devices, Shanxi University, Taiyuan 030006, China |
|
|
|
|
Abstract We demonstrate multiple transparency windows in a cavity opto-magnomechanical system containing a ferromagnetic material yttrium iron garnet (YIG) crystal. The probe output spectrum reveals the simultaneous emergence of three distinct phenomena: magnon-induced transparency (MIT) arising from microwave-magnon coupling; magnomechanically induced transparency (MMIT) through phonon-magnon interaction, and optomechanically induced transparency (OMIT) mediated by optical cavity-photon coupling. Crucially, these transparency features demonstrate dynamic tunability through precise manipulation of the number of interacting modes and coupling strengths. Our study reveals the effects of magnon-microwave and optomechanical coupling on probe results and the role of quantum interference mechanisms in a resonant system. Moreover, the fast-slow light effect can be enhanced and switched by choosing appropriate coupling parameters. Our work has potential applications in multi-band quantum storage and multi-channel photonic information processing devices.
|
Received: 27 December 2024
Revised: 13 March 2025
Accepted manuscript online: 18 March 2025
|
|
PACS:
|
42.50.Ct
|
(Quantum description of interaction of light and matter; related experiments)
|
| |
42.50.-p
|
(Quantum optics)
|
| |
42.50.Md
|
(Optical transient phenomena: quantum beats, photon echo, free-induction decay, dephasings and revivals, optical nutation, and self-induced transparency)
|
| |
42.50.Nn
|
(Quantum optical phenomena in absorbing, amplifying, dispersive and conducting media; cooperative phenomena in quantum optical systems)
|
|
| Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 62071376, 62405041, 52175531, and 62005211), the National Key Laboratory of Science and Technology on Space Microwave (Grant No. HTKJ2024KL504002), and the Program of State Key Laboratory of Quantum Optics and Quantum Optics Devices (Grant No. KF202408), and the Natural Science Foundation of Chongqing (Grant No. CSTB2024NSCQ-MSX0746). |
Corresponding Authors:
Jiajia Du
E-mail: dujj@cqupt.edu.cn
|
Cite this article:
Ke Di(邸克), Huarong Xia(夏华容), Wenting Diao(刁文婷), Chunxiao Cai(蔡春晓), Wenhai Yang(杨文海), Yulian Qin(秦瑜莲), Ziting Liao(廖子婷), Yucan He(何钰灿), and Jiajia Du(杜佳佳) Tunable magnomechanically and optomechanically induced transparency in a cavity opto-magnomechanical system 2025 Chin. Phys. B 34 074201
|
[1] Kippenberg T J and Vahala K J 2008 Science 321 1172 [2] Weis S, Rivière R, Deléglise S, Gavartin E, Arcizet O, Schliesser A and Kippenberg T J 2010 Science 330 1520 [3] Qin G Q, Yang H, Mao X, Wen J W, Wang M, Ruan D and Long G L 2020 Opt. Express 28 580 [4] Wang B, Nori F and Xiang Z L 2024 Phys. Rev. Lett. 132 053601 [5] Ren Y L, Ma S L, Xie J K, Li X K and Li F L 2021 Opt. Express 29 41399 [6] Zhou B Y and Li G X 2016 Phys. Rev. A 94 033809 [7] Lvovsky A I, Sanders B C and Tittel W 2009 Nat. Photon. 3 706 [8] He Y 2016 Phys. Rev. A 94 063804 [9] Wang Q, Zhang J Q, Ma P C, Yao C M and Feng M 2015 Phys. Rev. A 91 063827 [10] Zuo X, Fan Z Y, Qian H, Ding M S, Tan H, Xiong H and Li J 2024 New. J. Phys. 26 031201 [11] Mihalceanu L, Vasyuchka V I, Bozhko D A, Langner T, Nechiporuk A Y, Romanyuk V F, Hillebrands B and Serga A A 2018 Phys. Rev. B 97 214405 [12] Ullah K, Naseem M T and Müstecaplıoǧlu Ö E 2020 Phys. Rev. A 102 033721 [13] Barbhuiya S A and Bhattacherjee A B 2022 J. Appl. Phys. 132 [14] Yang Z, Zhao C, Peng R, Yang J and Zhou L 2023 Opt. Lett. 48 375 [15] Shen R C, Li J, Fan Z Y, Wang Y P and You J Q 2022 Phys. Rev. Lett. 129 123601 [16] Zhang H Q, Chu S S, Zhang J S, ZhongWX and Cheng G L 2024 Opt. Lett. 49 2009 [17] Li J, Zhu S Y and Agarwal G S 2018 Phys. Rev. Lett. 121 203601 [18] Kong D, Xu J, Gong C,Wang F and Hu X 2022 Opt. Express 30 34998 [19] Bayati S, Bagheri Harouni M and Mahdifar A 2024 Opt. Express 32 14914 [20] Agarwal G S and Huang S 2010 Phys. Rev. A 81 041803 [21] Fan Z Y, Qian H, Zuo X and Li J 2023 Phys. Rev. A 108 023501 [22] Chabar N and Amazioug M 2024 Chin. Phys. B 33 120308 [23] Liao Q, Peng K and Qiu H 2023 Chin. Phy. B 32 054205 [24] Engelhardt F, Bittencourt V A S V, Huebl H and Kusminskiy S V 2022 Phys. Rev. Appl. 18 044059 [25] Fano U 1961 Phys. Rev. 124 1866 [26] Lu T X, Xiao X, Chen L S, Zhang Q and Jing H 2023 Phys. Rev. A 107 063714 [27] Zangeneh-Nejad F and Fleury R 2019 Phys. Rev. Lett. 122 014301 [28] Akhtar M S and Naweed A 2024 Opt. Lett. 49 5667 [29] Liu Z X, Xiong H and Wu Y 2019 IEEE Access 7 57047 [30] Fan Z Y, Qian H and Li J 2022 Quantum. Sci. Technol. 8 015014 [31] Li J and Gröblacher S 2021 Quantum. Sci. Technol. 6 024005 [32] Zhang X, Zou C L, Jiang L and Tang H X 2014 Phys. Rev. Lett. 113 156401 [33] Qiu W, Cheng X, Chen A, Lan Y and Nie W 2022 Phys. Rev. A 105 063718 [34] Fan Z Y, Qiu L, Gröblacher S and Li J 2023 Laser. Photon. Rev. 17 2200866 [35] Wang Y P, Zhang G Q, Zhang D, Luo X Q, Xiong W, Wang S P, Li T F, Hu C M and You J Q 2016 Phys. Rev. B 94 224410 [36] Kong C, Wang B, Liu Z X, Xiong H and Wu Y 2019 Opt. Express 27 5544 [37] Huang S and Agarwal G S 2011 Phys. Rev. A 83 043826 [38] Wang Y D and Clerk A A 2012 Phys. Rev. Lett. 108 153603 [39] Jiang C, Liu H, Cui Y, Li X, Chen G and Chen B 2013 Opt. Express 21 12165 [40] Sohail A, Zhang Y, Zhang J and Yu C S 2016 Sci. Rep. 6 28830 [41] Agarwal G S and Huang S 2010 Phys. Rev. A 81 041803 [42] Yan X B 2020 Phys. Rev. A 101 043820 [43] Tarhan D, Huang S and Müstecaplıoǧlu Ö E 2013 Phys. Rev. A 87 013824 [44] Zhang X, Zou C L, Jiang, L and Tang H X 2016 Sci. Adv. 2 e1501286 [45] Gröblacher S, Hammerer K, Vanner M R and Aspelmeyer M 2009 Nature 460 724 |
| No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|