Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(11): 110206    DOI: 10.1088/1674-1056/ad7fd1
GENERAL Prev   Next  

Abundant invariant solutions of extended (3+1)-dimensional KP-Boussinesq equation

Hengchun Hu(胡恒春)† and Jiali Kang(康佳丽)
College of Science, University of Shanghai for Science and Technology, Shanghai 200093, China
Abstract  Lie group analysis method is applied to the extended $(3+1)$-dimensional Kadomtsev-Petviashvili-Boussinesq equation and the corresponding similarity reduction equations are obtained with various infinitesimal generators. By selecting suitable arbitrary functions in the similarity reduction solutions, we obtain abundant invariant solutions, including the trigonometric solution, the kink-lump interaction solution, the interaction solution between lump wave and triangular periodic wave, the two-kink solution, the lump solution, the interaction between a lump and two-kink and the periodic lump solution in different planes. These exact solutions are also given graphically to show the detailed structures of this high dimensional integrable system.
Keywords:  extended (3+1)-dimensional KP-Boussinesq equation      Lie group method      similarity reduction      invariant solution  
Received:  18 August 2024      Revised:  24 September 2024      Accepted manuscript online:  26 September 2024
PACS:  02.30.Ik (Integrable systems)  
  05.45.Yv (Solitons)  
  02.30.Jr (Partial differential equations)  
Corresponding Authors:  Hengchun Hu     E-mail:  hhengchun@163.com

Cite this article: 

Hengchun Hu(胡恒春) and Jiali Kang(康佳丽) Abundant invariant solutions of extended (3+1)-dimensional KP-Boussinesq equation 2024 Chin. Phys. B 33 110206

[1] Kadomtsev B B and Petviashvili V I 1970 Sov. Phys. Dokl. 15 539
[2] Wazwaz A M 2012 Commun. Nonlinear Sci. Numer. Simulat. 17 491
[3] Ma W X and Zhu Z N 2012 Appl. Math. Comput. 218 11871
[4] Hu H C and Sun R L 2022 Mod. Phys. Lett. B 36 2150587
[5] Hu H C and Li Y Q 2023 Chin. Phys. B 32 040503
[6] Khalique C M and Moleleki L D 2019 Results Phys. 13 102239
[7] Liu Q F and Li C Z 2017 J. Math. Phys. 58 113505
[8] Li C Z 2018 J. Math. Phys. 59 123503
[9] Wazwaz A M and El-Tantawy S A 2017 Nonlinear Dyn. 88 3017
[10] Sun B N and Wazwaz A M 2018 Commun. Nonlinear Sci. Numer. Simulat. 64 1
[11] Liu N and Liu Y 2019 Mod. Phys. Lett. B 33 1950395
[12] Moleleki L D, Simbanefayi I and Khalique C M 2020 Chin. J. Phys. 68 940
[13] Shao C H, Yang L, Yan Y S, Wu J Y, Zhu M T and Li L F 2023 Sci. Rep. 13 15826
[1] Lie symmetry analysis and invariant solutions for the (3+1)-dimensional Virasoro integrable model
Hengchun Hu(胡恒春) and Yaqi Li(李雅琦). Chin. Phys. B, 2023, 32(4): 040503.
[2] Nonautonomous solitary-wave solutions of the generalized nonautonomous cubic–quintic nonlinear Schrödinger equation with time- and space-modulated coefficients
He Jun-Rong (何俊荣), Li Hua-Mei (李画眉). Chin. Phys. B, 2013, 22(4): 040310.
[3] Melting phenomenon in magneto hydro-dynamics steady flow and heat transfer over a moving surfacein the presence of thermal radiation
Reda G. Abdel-Rahman, M. M. Khader, Ahmed M. Megahed. Chin. Phys. B, 2013, 22(3): 030202.
[4] Invariance of Painlevé property for some reduced (1+1)-dimensional equations
Zhi Hong-Yan (智红燕), Chang Hui (常辉). Chin. Phys. B, 2013, 22(11): 110203.
[5] Symmetry analysis and explicit solutions of the (3+1)-dimensional baroclinic potential vorticity equation
Hu Xiao-Rui(胡晓瑞), Chen Yong(陈勇), and Huang Fei(黄菲). Chin. Phys. B, 2010, 19(8): 080203.
[6] Approximate symmetry reduction for perturbed nonlinear Schr?dinger equation
Xie Shui-Ying(谢水英) and Lin Ji(林机). Chin. Phys. B, 2010, 19(5): 050201.
[7] Lie symmetry analysis and reduction of a new integrable coupled KdV system
Qian Su-Ping(钱素平) and Tian Li-Xin(田立新). Chin. Phys. B, 2007, 16(2): 303-309.
[8] An extension of the direct method and similarity reductions of a generalized Burgers equation with an arbitrary derivative function
Zhang Yu-Feng (张玉峰), Zhang Hong-Qing (张鸿庆). Chin. Phys. B, 2002, 11(4): 319-322.
[9] SIMILARITY REDUCTIONS OF THE (2+1)-DIMENSIONAL BURGERS SYSTEM
Liu Dang-bo (刘当波), Chu Kai-qin (储开芹). Chin. Phys. B, 2001, 10(8): 683-688.
[10] CONDITIONAL SIMILARITY REDUCTION APPROACH: JIMBO--MIWA EQUATION
Lou Sen-yue (楼森岳), Tang Xiao-yan (唐晓艳). Chin. Phys. B, 2001, 10(10): 897-901.
No Suggested Reading articles found!