Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(1): 010203    DOI: 10.1088/1674-1056/ad925b
GENERAL Prev   Next  

Multiparameter generalized universal characters and multiparameter generalized B-type universal characters

Jingfan Wang(王竸凡) and Zhaowen Yan(颜昭雯)†
School of Mathematical Sciences, Inner Mongolia University, Hohhot 010021, China
Abstract  We construct the quantum fields presentation of the generalized universal character and the generalized B-type universal character, and by acting the quantum fields presentations to the constant $1$, the generating functions are derived. Furthermore, we introduce two integrable systems known as the generalized UC (GUC) hierarchy and the generalized B-type UC (GBUC) hierarchy satisfied by the generalized universal character and the generalized B-type universal character, respectively. Based on infinite sequences of complex numbers, we further establish the multiparameter generalized universal character and the multiparameter generalized B-type universal character, which have been proved to be solutions of the GUC hierarchy and the GBUC hierarchy, respectively.
Keywords:  symmetric functions      quantum fields      generating functions      multiparameter generalized universal characters  
Received:  04 October 2024      Revised:  07 November 2024      Accepted manuscript online:  14 November 2024
PACS:  02.10.Hh (Rings and algebras)  
  02.30.Ik (Integrable systems)  
  05.45.Yv (Solitons)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 12461048 and 12061051), the Natural Science Foundation of Inner Mongolia Autonomous Region (Grant No. 2023MS01003), and the Program for Young Talents of Science and Technology in Universities of Inner Mongolia Autonomous Region (Grant No. NJYT23096). Zhaowen Yan acknowledges the financial support from the Program of China Scholarships Council (Grant No. 202306810054) for one year study at the University of Leeds.
Corresponding Authors:  Zhaowen Yan     E-mail:  yanzw@imu.edu.cn

Cite this article: 

Jingfan Wang(王竸凡) and Zhaowen Yan(颜昭雯) Multiparameter generalized universal characters and multiparameter generalized B-type universal characters 2025 Chin. Phys. B 34 010203

[1] Macdonald I G 1995 Symmetric Functions and Hall Polynomials, 2nd edn. (Oxford: Clarendon Press)
[2] Jing N H 1991 J. Algebra 138 340
[3] Sagan B E 2001 The Symmetric Group: Representations, Combinatorial Algorithms, and Symmetric Functions, 2nd edn. (New York: Springer-Verlag)
[4] Date E, Kashiwara M, Jimbo M and Miwa T 1983 Transformation groups for soliton equations, in Nonlinear integrable systems-classical theory and quantum theory (Singapore: World Scientific Publishing)
[5] You Y 1989 Adv. Ser. Math. Phys. 7 449
[6] Jimbo M, Miwa T and Date E 2000 Solitons: Differential Equations, Symmetries and Infinite Dimensional Algebras (Cambridge: Cambridge University Press)
[7] Kac V G, Rozhkovskaya N and van de Leur J 2021 J. Math. Phys. 62 021702
[8] Kac V G and van de Leur J 2022 Publ. Res. Inst. Math. Sci. 58 1
[9] Koike K 1989 Adv. Math. 74 57
[10] Tsuda T 2004 Commun. Math. Phys. 248 501
[11] Ogawa Y 2009 Tokyo J. Math. 32 350
[12] Huang F and Wang N 2020 J. Math. Phys. 61 061508
[13] Shi L J, Wang N and Chen M R 2021 J. Nonlinear Math. Phys. 28 292
[14] Huang F and Li C Z 2024 Physica D 461 134110
[15] Fauser B, Jarvis P D and King R C 2010 J. Phys. A 43 405202
[16] Fauser B, Jarvis P D and King R C 2016 J. Phys. A 49 425201
[17] An R, Wang N and Yan Z W 2024 J. Math. Phys. 65 013505
[18] Wang N and Li C Z 2019 Glasg. Math. J. 61 601
[19] Li C Z, Zhang Y and Dong H H 2023 Theor. Math. Phys. 214 238
[20] Li D H and Yan Z W 2024 Generalized universal characters, B-type of generalized universal characters and symplectic generalized universal characters, submit to publication
[21] Necoechea G and Rozhkovskaya N 2020 J. Math. Sci. 247 926
[22] Huang F and Li C Z 2023 J. Math. Phys. 64 012501
[23] Li D H, Wang F and Yan Z W 2022 Chin. Phys. B 31 080202
[24] Li D H, Jia Y J and Yan Z W 2022 Int. J. Geom. Methods Mod. Phys. 19 2250123
[25] Ikeda T 2007 Adv. Math. 215 1
[26] Ikeda T and Narsue H 2009 Trans. Amer. Math. Soc. 361 5193
[27] Olshanski G, Regev A and Vershik A 2003 Progr. Math. 210 251
[28] Ivanov V N 2005 J. Math. Sci. 131 5495
[29] Korotkikh S 2017 J. Math. Sci. 224 263
[30] Rozhkovskaya N 2019 Symmetry Integrability Geom. Methods Appl. 15 065
[31] Yang Q and Li C Z 2022 J. Math. Phys. 63 113503
[1] Quantum fields presentation and generating functions of symplectic Schur functions and symplectic universal characters
Denghui Li(李登慧), Fei Wang(王菲), and Zhaowen Yan(颜昭雯). Chin. Phys. B, 2022, 31(8): 080202.
[2] Higher-order squeezing of quantum field and higher-order uncertainty relations in non-degenerate four-wave mixing
Li Xi-Zeng (李希曾), Su Bao-Xia (苏保霞), Chai Lu (柴路). Chin. Phys. B, 2005, 14(9): 1828-1833.
[3] Higher-order squeezing of quantum electromagnetic fields and higher-order uncertainty relations in two-mode squeezed states
Li Xi-Zeng (李希曾), Su Bao-Xia (苏保霞), Chai Lu (柴路). Chin. Phys. B, 2004, 13(12): 2058-2063.
No Suggested Reading articles found!