Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(4): 040201    DOI: 10.1088/1674-1056/adaccb
GENERAL   Next  

New interaction solutions in Mel’nikov equation obtained by modulating the phase shift

Mi Chen(陈觅)1 and Zhen Wang(王振)2,†
1 School of Mathematical Sciences, Dalian University of Technology, Dalian 116024, China 2 School of Mathematical Sciences, Beihang University, Beijing 100191, China
Abstract  The degradation and nonlinear interactions of a two-breather solution of the Mel’nikov equation are analyzed. By modulating the phase shift and limit method, we prove that in different regions near the non-singular boundaries, there are four kinds of solutions with repulsive interaction or attractive interaction in addition to the two-breather solution. They are the interaction solution between soliton and breather, the two-soliton solution, and the two-breather solution with small amplitude, which all exhibit repulsive interactions; and the two-breather solution with small amplitude, which exhibits attractive interaction. Interestingly, a new breather acts as a messenger to transfer energy during the interaction between two breather solutions with small amplitude.
Keywords:  Mel’nikov equation      breather solution      phase shift  
Received:  29 October 2024      Revised:  03 January 2025      Accepted manuscript online:  22 January 2025
PACS:  02.30.Ik (Integrable systems)  
  05.45.Yv (Solitons)  
  02.30.Jr (Partial differential equations)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 52171251 and U21062251) and Program of Science and Technology Innovation of Dalian (Grant No. 2022JJ12GX036).
Corresponding Authors:  Zhen Wang     E-mail:  wangzmath@163.com

Cite this article: 

Mi Chen(陈觅) and Zhen Wang(王振) New interaction solutions in Mel’nikov equation obtained by modulating the phase shift 2025 Chin. Phys. B 34 040201

[1] Frisquet B and Kibler B 2013 Phys. Rev. X 3 041032
[2] Xu Q and Tian Q 2007 Chin. Phys. Lett. 24 3351
[3] Xu, Q and Tian Q 2007 Chin. Phys. Lett. 24 2197
[4] Zhang Z, Yang S X and Li B 2019 Chin. Phys. Lett. 36 120501
[5] Kibler B, Fatome J, Finot C, Millot G, Genty G, Wetzel B, Akhmediev N, Dias F and Dudley J M 2012 Sci. Rep. 2 463
[6] Wu Y H, Liu C, Yang Z Y and Yang W L 2020 Chin. Phys. Lett. 37 040501
[7] Wang X and Wang L 2018 Chin. Phys. Lett. 35 030201
[8] Dai Z D, Xian D Q and Li D L 2009 Chin. Phys. Lett. 26 040203
[9] Kruglov V I and Triki H 2023 Chin. Phys. Lett. 40 090503
[10] Kuznetsov E A 1977 Dokl. Akad. Nauk SSSR 22 507
[11] Akhmediev N N and Korneev V I 1986 Theor. Math. Phys. 69 1089
[12] Page J 1990 Phys. Rev. B 41 7835
[13] Liu C, Chen S C, Yao X and Akhmediev N 2022 Chin. Phys. Lett. 39 094201
[14] Liu X S, Zha L C, Duan L, Gao P, Yang Z Y and Yang W L 2018 Chin. Phys. Lett. 35 020501
[15] Du Y J, Xie X T, Yu J Y and Bai J T 2015 Chin. Phys. Lett. 32 074210
[16] Ding C C, Zhou Q, Xu S, Triki H, Mirzazadeh M and Liu W 2023 Chin. Phys. Lett. 40 040501
[17] Miles J W 1997 J. Fluid Mech. 79 171
[18] Murakami Y and Tajiri M 1991 Wave Motion 14 169
[19] Tajiri M and Arai T 2011 J. Phys. A:Math. Theor. 44 335209
[20] Yin K H, Cheng X P and Lin J 2021 Chin. Phys. Lett. 38 080201
[21] Xu Y, Li P, Mihalache D and He J 2023 Chaos, Soliton. Fract. 172 113471
[22] Liu Y and Li B 2020 Nonlinear Dynam. 100 3717
[23] Zakharov V E 1972 Sov. Phys. JETP 35 908
[24] Mel'nikov V K 1986 Phys. Lett. A 118 22
[25] Mel'nikov V K 1987 Commum. Math. Phys. 112 639
[26] Hase Y, Hirota R and Ohta Y 1989 J. Phys. Soc. Jpn. 58 2713
[27] Kumar C S, Radha R and Lakshmanan M 2004 Chaos, Soliton. Fract. 22 705
[28] Mu G and Qin Z Y 2014 Nonlinear Anal. Rwa. 18 1
[29] Zhang X, Xu T and Chen Y 2018 Nonlinear Dynam. 94 2841
[30] Rao J, Malomed B A, Cheng Y and He J 2020 Commun. Nonlinear Sci. 91 105429
[31] Xu Y S, Mihalache D and He J S 2021 Nonlinear Dynm. 106 2431
[32] Hirota R 2004 Cambridge Tracts in Mathematics (Cambridge University Press)
[1] Continuous-variable quantum secure direct communication based on N-APSK with Boltzmann-Maxwell distribution
Zheng-Wen Cao(曹正文), Yu-Jie Zhang(张昱洁), Geng Chai(柴庚), Zhang-Tao Liang(梁章韬), Xin-Lei Chen(陈欣蕾), Lei Wang(王磊), and Yu-Jie Wang(王禹杰). Chin. Phys. B, 2025, 34(3): 030303.
[2] Nondestructive detection of atom counts in laser-trapped 171Yb atoms
Congcong Tian(田聪聪), Qiang Zhu(朱强), Bing Wang(王兵), Dezhi Xiong(熊德智), Zhuanxian Xiong(熊转贤), Lingxiang He(贺凌翔), and Baolong Lyu(吕宝龙). Chin. Phys. B, 2025, 34(2): 023201.
[3] Diagnosing ratio of electron density to collision frequency of plasma surrounding scaled model in a shock tube using low-frequency alternating magnetic field phase shift
Ming-Xing Wu(吴明兴), Kai Xie(谢楷), Yan Liu(刘艳), Han Xu(徐晗), Bao Zhang(张宝), and De-Yang Tian(田得阳). Chin. Phys. B, 2024, 33(5): 055204.
[4] Model on picometer-level light gravitational delay in the GRACE Follow-On-like missions
Jin-Zhuang Dong(董金壮), Wei-Sheng Huang(黄玮圣), Cheng-Gang Qin(秦成刚), Yu-Jie Tan(谈玉杰), and Cheng-Gang Shao(邵成刚). Chin. Phys. B, 2024, 33(11): 110401.
[5] Positon and hybrid solutions for the (2+1)-dimensional complex modified Korteweg-de Vries equations
Feng Yuan(袁丰) and Behzad Ghanbari. Chin. Phys. B, 2023, 32(4): 040201.
[6] From breather solutions to lump solutions: A construction method for the Zakharov equation
Feng Yuan(袁丰), Behzad Ghanbari, Yongshuai Zhang(张永帅), and Abdul Majid Wazwaz. Chin. Phys. B, 2023, 32(12): 120201.
[7] Three-step self-calibrating generalized phase-shifting interferometry
Yu Zhang(张宇). Chin. Phys. B, 2022, 31(3): 030601.
[8] Experimental demonstration of a fast calibration method for integrated photonic circuits with cascaded phase shifters
Junqin Cao(曹君勤), Zhixin Chen(陈志歆), Yaxin Wang(王亚新), Tianfeng Feng(冯田峰), Zhihao Li(李志浩), Zeyu Xing(邢泽宇), Huashan Li(李华山), and Xiaoqi Zhou(周晓祺). Chin. Phys. B, 2022, 31(11): 114204.
[9] Soliton, breather, and rogue wave solutions for solving the nonlinear Schrödinger equation using a deep learning method with physical constraints
Jun-Cai Pu(蒲俊才), Jun Li(李军), and Yong Chen(陈勇). Chin. Phys. B, 2021, 30(6): 060202.
[10] General M-lumps, T-breathers, and hybrid solutions to (2+1)-dimensional generalized KDKK equation
Peisen Yuan(袁培森), Jiaxin Qi(齐家馨), Ziliang Li(李子良), and Hongli An(安红利). Chin. Phys. B, 2021, 30(4): 040503.
[11] A low noise, high fidelity cross phase modulation in multi-level atomic medium
Liangwei Wang(王亮伟), Jia Guan(关佳), Chengjie Zhu(朱成杰), Runbing Li(李润兵), and Jing Shi(石兢). Chin. Phys. B, 2021, 30(11): 114204.
[12] Repulsive bubble-bubble interaction in ultrasonic field
Ling-Ling Zhang(张玲玲), Wei-Zhong Chen(陈伟中), Yao-Rong Wu(武耀蓉), Yang Shen(沈阳), and Guo-Ying Zhao(赵帼英). Chin. Phys. B, 2021, 30(10): 104301.
[13] Generation of orbital angular momentum and focused beams with tri-layer medium metamaterial
Zhi-Chao Sun(孙志超), Meng-Yao Yan(闫梦瑶), and Bi-Jun Xu(徐弼军)†. Chin. Phys. B, 2020, 29(10): 104101.
[14] Soliton molecules and dynamics of the smooth positon for the Gerdjikov–Ivanov equation
Xiangyu Yang(杨翔宇), Zhao Zhang(张钊), and Biao Li(李彪)†. Chin. Phys. B, 2020, 29(10): 100501.
[15] Single-shot phase-shifting digital holography with a photon-sieve-filtering telescope
You Li(李优), Yao-Cun Li(李垚村), Jun-Yong Zhang(张军勇), Yan-Li Zhang(张艳丽), Xue-Mei Li(李雪梅). Chin. Phys. B, 2019, 28(8): 084205.
No Suggested Reading articles found!