| CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Interacting Dirac semi-metal state in nonsymmorphic Kondo-lattice compound CeAgSb2 |
| Da-Liang Guo(郭达良)1,2,†, and Huan Li(黎欢)1,2,‡ |
1 College of Physics and Electronic Information Engineering, Guilin University of Technology, Guilin 541004, China; 2 Key Laboratory of Low-dimensional Structural Physics and Application, Education Department of Guangxi Zhuang Autonomous Region, Guilin 541004, China |
|
|
|
|
Abstract Dirac node-line (DNL) materials constitute a distinct category of topological semimetals, defined by the linear crossing of valence and conduction bands along one-dimensional lines within the Brillouin zone (BZ), resembling the behavior of Dirac fermions. However, spin-orbit coupling (SOC) and electronic interactions can typically alter these intersections and break the DNLs. In mostly reported cases, DNLs are classified as non-interacting types, which highlights the significant research value in searching for robust interacting DNLs in practical materials. Here, by employing first-principles calculations that combine density functional theory (DFT) with dynamical mean-field theory (DMFT), and leveraging symmetry-based indicator theory, we identify CeAgSb$_2$ as a Dirac semimetal. Our investigation reveals that robust Dirac nodal lines (DNLs) in this Kondo system are driven by Kondo interactions and nonsymmorphic lattice symmetries. Furthermore, our results demonstrate that the properties of these DNLs are substantially modulated by Kondo behavior across varying temperature regimes. The interacting DNLs in CeAgSb$_2$ represents a rare example of Dirac semimetal under electronic correlations, and the peculiar variation of Dirac fermions with temperature provides theoretical reference for future experimental explorations of novel electronic-correlation effects in topological materials.
|
Received: 18 January 2025
Revised: 23 March 2025
Accepted manuscript online: 31 March 2025
|
|
PACS:
|
71.27.+a
|
(Strongly correlated electron systems; heavy fermions)
|
| |
71.15.Mb
|
(Density functional theory, local density approximation, gradient and other corrections)
|
| |
72.15.Qm
|
(Scattering mechanisms and Kondo effect)
|
| |
71.10.-w
|
(Theories and models of many-electron systems)
|
|
| Fund: Project supported by the National Natural Science Foundation of China (Grant No. 12364023) and the Natural Science Foundation of Guangxi Zhuang Autonomous Regin, China (Grant No. 2024GXNSFAA010273). |
Corresponding Authors:
Da-Liang Guo, Huan Li
E-mail: guo22@glut.edu.cn;lihuan@glut.edu.cn
|
Cite this article:
Da-Liang Guo(郭达良), and Huan Li(黎欢) Interacting Dirac semi-metal state in nonsymmorphic Kondo-lattice compound CeAgSb2 2025 Chin. Phys. B 34 067102
|
[1] Pramanik A, Pandeya R P, Vyalikh D V, Generalov A, Moras P, Kundu A K, Sheverdyaeva P M, Carbone C, Joshi B, Thamizhavel A, Ramakrishnan S and Maiti K 2021 Phys. Rev. B 103 155401 [2] Sakhya A P, Paulose P L, Thamizhavel A and Maiti K 2021 Phys. Rev. Mater. 5 054201 [3] Sakhya A P, Kumar S, Pramanik A, Pandeya R P, Verma R, Singh B, Datta S, Sasmal S, Mondal R, Schwier E F, Shimada K, Thamizhavel A and Maiti K 2022 Phys. Rev. B 106 085132 [4] Wu Y, Wang L L, Mun E,Johnson D D, Mou D X, Huang L, Lee Y B, Bud’ko S L, Canfield P C and Kaminski A 2016 Nat. Phys. 12 667 [5] Datta S, Ali K, Verma R, Singh B, Dash S P, Thamizhavel A and Maiti K 2023 arXiv: 2311.05278 [cond-mat.str-el] [6] Neupane M, Xu S Y, Sankar R, Alidoust N, Bian G, Liu C, Belopolski I, Chang T R, Jeng H T, Lin H, Bansil A, Chou F and Hasan M Z 2014 Nat. Commun. 5 3786 [7] Borisenko S, Gibson Q, Evtushinsky D, Zabolotnyy V, Büchner B and Cava R J 2014 Phys. Rev. Lett. 113 027603 [8] Liu Z K, Zhou B, Wang Z J, Weng H M, Prabhakaran D, Mo S K, Zhang Y, Shen Z X, Fang Z and Dai X 2014 Science 343 864 [9] Sun Y, Wu S C and Yan B H 2015 Phys. Rev. B 92 115428 [10] Xu S Y, Belopolski I, Alidoust N, Neupane M, Bian G, Zhang C, Sankar R, Chang G, Yuan Z, Lee C C, Huang S M, Zheng H, Ma J, Sanchez D S, Wang B K, Bansil A, Chou F, Shibayev P P, Lin H, Jia S and Hasan M Z 2015 Science 349 613 [11] Lv B Q, Xu N, Weng H M, Ma J Z, Richard P, Huang X C, Zhao L X, Chen G F, Matt C E and Bisti F 2015 Nat. Phys. 11 724 [12] Soh J R, Jacobsen H, Ouladdiaf B, Ivanov A, Piovano A, Tejsner T, Feng Z, Wang H, Su H, Guo Y, Shi Y and Boothroyd A T 2019 Phys. Rev. B 100 144431 [13] Zhang T T, Yilmaz T, Vescovo E, Li H X, Moore R G, Lee H N, Miao H, Murakami S and McGuireMA 2022 npj Comput. Mater. 022 00838 [14] Burkov A, Hook M and Balents L 2011 Phys. Rev. B 84 235126 [15] Hao Z, Chen W, Wang Y, Li J, Ma X M, Hao Y J, Lu R, Shen Z, Jiang Z, Liu W, Jiang Q, Yang Y, Lei X, Wang L, Fu Y, Zhou L, Huang L, Liu Z, Ye M, Shen D, Mei J, He H, Liu C, Deng K, Liu C, Liu Q and Chen C 2021 Phys. Rev. B 104 115158 [16] Hong G H, Wang C W, Chen J J, Cui S T, Yang H F, Liang A J, Liu S, Lv Y Y, Zhou J, Chen Y B, Yao S H, Lu M H, Chen Y F, Wang M X, Yang L X, Liu Z K and Chen Y L 2018 Chin. Phys. B 27 017105 [17] Schoop L M, Ali M N, Straér C, Topp A, Varykhalov A, Marchenko D, Duppel V, Parkin S S P, Lotsch B V and Ast C R 2015 Nat. Commun. 7 11696 [18] Fu B B, Yi C J, Zhang T T, Caputo M, Ma J Z, Gao X, Lv B Q, Kong L Y, Huang Y B, Richard P, Shi M, Strocov V N, Fang C, Weng H M, Shi Y G, Qian T and Ding H 2019 Sci. Adv. 5 6459 [19] Chen C, Xu X, Jiang J, Wu S C, Qi Y P, Yang L X, Wang M X, Sun Y, Schröoter N B M, Yang H F, Schoop L M, Lv Y Y, Zhou J, Chen Y B, Yao S H, Lu M H, Chen Y F, Felser C, Yan B H, Liu Z K and Chen Y L 2017 Phys. Rev. B 95 125126 [20] Wang Y, Qian Y T, Yang M, Chen H X, Li C, Tan Z Y, Cai Y Q, Zhao W J, Gao S Y, Feng Y, Kumar S, Schwier E F, Zhao L, Weng H, Shi Y, Wang G, Song Y, Huang Y, Shimada K, Xu Z, Zhou X J and Liu G 2021 Phys. Rev. B 103 125131 [21] Inada Y, Thamizhavel A, Yamagami H, Takeuchi T, Sawai Y, Ikeda S, Shishido H, Okubo T, Yamada M, Sugiyama K, Nakamura N, Yamamoto T, Kindo K, Ebihara T, Galatanu A, Yamamoto E, Settai R and Onuki Y 2002 Philosophical Magazine B 82 1867 [22] Jobiliong E, Brooks J S, Choi E S, Lee H and Fisk Z 2005 Phys. Rev. B 72 104428 [23] Patil S, Medicherla V R R, Singh R S, Pandey S K, Sampathkumaran E V and K Maiti 2010 Phys. Rev. B 82 104428 [24] Haule K, Yee C H and Kim K 2010 Phys. Rev. B 81 195107 [25] Blaha P, Schwarz K, Tran F, Laskowski R, Madsen G K H and Marks L D 2020 J. Chem. Phys. 152 074101 [26] Shim J H, Haule K and Kotliar G 2007 Science 318 1615 [27] Nam T S, Kang C J, Ryu D C, Kim J, Kim H, Kim K and Min B I 2019 Phys. Rev. B 99 125115 [28] Lu H Y and Huang L 2016 Phys. Rev. B 94 075132 [29] Zhu X G, Liu Y, Zhao Y W, Wang Y C, Zhang Y, Lu C, Duan Y, Xie D H, Feng W and Jian D 2020 npj Quantum Mater. 5 47 [30] Wang Y C, Xu Y J, Liu Y, Han X J, Zhu X G, Yang Y F, Bi Y, Liu H F and Song H F 2021 Phys. Rev. B 103 165140 [31] Chen Q Y, Feng W, Xie D H, Lai X C, Zhu X G and Huang L 2018 Phys. Rev. B 97 155155 [32] Shen S W, Qin T, Gao J J, Wen C, Wang J H, Wang W, Li J, Luo X, Lu W J and Sun Y P 2022 Chin. Phys. Lett. 39 077401 [33] Xu B, Liu R, Wo H L, Liao Z Y, Yi S H, Li C H, Zhao J, Qiu X G, Yin Z P and Bernhard C 2025 arXiv: 2502.20796 [cond-mat.str-el] [34] Jarrell M and Gubernatis J E 1996 Phys. Rep. 269 133 [35] Cao C, Zhi G X and Zhu J X 2020 Phys. Rev. Lett. 124 166403 [36] Ma H T, Ming X, Zheng X J,Wen J F,Wang Y C, Liu Y and Li H 2023 Phys. Rev. B 107 075124 [37] Sologub O, Noel H, Leithe-Jasper A, Rogl P and Bodak O I 1995 J. Solid State Chem. 115 441 [38] Thorton M J, Armitage J G M, Tomka G J, Riedi P C, Mitchel R H, Houshiar M, Adroja D T, Rainford B D and Fort D 1998 J. Phys: Condens. Matter 10 9485 [39] Myers K D, Bud’ko S L, Fisher I R, Islam Z, Kleinke H, Lacerda A H and Canfield P C 1999 J. Magn. Magn. Mater. 205 27 [40] Nam T S, Kim J, Kang C J, Kim K and Min B I 2021 Phys. Rev. B 103 045101 [41] Burdin S, Georges A and Grempel D R 2000 Phys. Rev. Lett. 85 1048 [42] Rosmus M, Olszowska N, Bukowski Z, Starowicz P, Piekarz P and Ptok A 2022 Materials 15 7168 [43] Young S M and Kane C L 2015 Phys. Rev. Lett. 115 126803 [44] Gao J C, Wu Q S, Persson C and Wang Z J 2021 Comput. Phys. Commun. 261 107760 [45] Steglich F 2023 arXiv: 2312.11162 [cond-mat.str-el] [46] Wu H, Hallas A M, Cai X, Huang J, Oh J S, Loganathan V, Weiland A, McCandless G T, Chan J Y, Mo S K, Lu D, Hashimoto M, Denlinger J, Birgeneau R J, Nevidomskyy A H, Li G, Morosan E and Yi M 2022 npj Quantum Mater. 7 31 [47] Zhang S K, Xu Y J, Li G J, Wang J S, Zhou Z P and An Y P 2025 arXiv: 2502.13585 [cond-mat.str-el] |
| No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|