Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(6): 067102    DOI: 10.1088/1674-1056/adc6f6
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Interacting Dirac semi-metal state in nonsymmorphic Kondo-lattice compound CeAgSb2

Da-Liang Guo(郭达良)1,2,†, and Huan Li(黎欢)1,2,‡
1 College of Physics and Electronic Information Engineering, Guilin University of Technology, Guilin 541004, China;
2 Key Laboratory of Low-dimensional Structural Physics and Application, Education Department of Guangxi Zhuang Autonomous Region, Guilin 541004, China
Abstract  Dirac node-line (DNL) materials constitute a distinct category of topological semimetals, defined by the linear crossing of valence and conduction bands along one-dimensional lines within the Brillouin zone (BZ), resembling the behavior of Dirac fermions. However, spin-orbit coupling (SOC) and electronic interactions can typically alter these intersections and break the DNLs. In mostly reported cases, DNLs are classified as non-interacting types, which highlights the significant research value in searching for robust interacting DNLs in practical materials. Here, by employing first-principles calculations that combine density functional theory (DFT) with dynamical mean-field theory (DMFT), and leveraging symmetry-based indicator theory, we identify CeAgSb$_2$ as a Dirac semimetal. Our investigation reveals that robust Dirac nodal lines (DNLs) in this Kondo system are driven by Kondo interactions and nonsymmorphic lattice symmetries. Furthermore, our results demonstrate that the properties of these DNLs are substantially modulated by Kondo behavior across varying temperature regimes. The interacting DNLs in CeAgSb$_2$ represents a rare example of Dirac semimetal under electronic correlations, and the peculiar variation of Dirac fermions with temperature provides theoretical reference for future experimental explorations of novel electronic-correlation effects in topological materials.
Keywords:  heavy-fermions      topological semimetals      dynamical mean-field theory      Kondo effect  
Received:  18 January 2025      Revised:  23 March 2025      Accepted manuscript online:  31 March 2025
PACS:  71.27.+a (Strongly correlated electron systems; heavy fermions)  
  71.15.Mb (Density functional theory, local density approximation, gradient and other corrections)  
  72.15.Qm (Scattering mechanisms and Kondo effect)  
  71.10.-w (Theories and models of many-electron systems)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 12364023) and the Natural Science Foundation of Guangxi Zhuang Autonomous Regin, China (Grant No. 2024GXNSFAA010273).
Corresponding Authors:  Da-Liang Guo, Huan Li     E-mail:  guo22@glut.edu.cn;lihuan@glut.edu.cn

Cite this article: 

Da-Liang Guo(郭达良), and Huan Li(黎欢) Interacting Dirac semi-metal state in nonsymmorphic Kondo-lattice compound CeAgSb2 2025 Chin. Phys. B 34 067102

[1] Pramanik A, Pandeya R P, Vyalikh D V, Generalov A, Moras P, Kundu A K, Sheverdyaeva P M, Carbone C, Joshi B, Thamizhavel A, Ramakrishnan S and Maiti K 2021 Phys. Rev. B 103 155401
[2] Sakhya A P, Paulose P L, Thamizhavel A and Maiti K 2021 Phys. Rev. Mater. 5 054201
[3] Sakhya A P, Kumar S, Pramanik A, Pandeya R P, Verma R, Singh B, Datta S, Sasmal S, Mondal R, Schwier E F, Shimada K, Thamizhavel A and Maiti K 2022 Phys. Rev. B 106 085132
[4] Wu Y, Wang L L, Mun E,Johnson D D, Mou D X, Huang L, Lee Y B, Bud’ko S L, Canfield P C and Kaminski A 2016 Nat. Phys. 12 667
[5] Datta S, Ali K, Verma R, Singh B, Dash S P, Thamizhavel A and Maiti K 2023 arXiv: 2311.05278 [cond-mat.str-el]
[6] Neupane M, Xu S Y, Sankar R, Alidoust N, Bian G, Liu C, Belopolski I, Chang T R, Jeng H T, Lin H, Bansil A, Chou F and Hasan M Z 2014 Nat. Commun. 5 3786
[7] Borisenko S, Gibson Q, Evtushinsky D, Zabolotnyy V, Büchner B and Cava R J 2014 Phys. Rev. Lett. 113 027603
[8] Liu Z K, Zhou B, Wang Z J, Weng H M, Prabhakaran D, Mo S K, Zhang Y, Shen Z X, Fang Z and Dai X 2014 Science 343 864
[9] Sun Y, Wu S C and Yan B H 2015 Phys. Rev. B 92 115428
[10] Xu S Y, Belopolski I, Alidoust N, Neupane M, Bian G, Zhang C, Sankar R, Chang G, Yuan Z, Lee C C, Huang S M, Zheng H, Ma J, Sanchez D S, Wang B K, Bansil A, Chou F, Shibayev P P, Lin H, Jia S and Hasan M Z 2015 Science 349 613
[11] Lv B Q, Xu N, Weng H M, Ma J Z, Richard P, Huang X C, Zhao L X, Chen G F, Matt C E and Bisti F 2015 Nat. Phys. 11 724
[12] Soh J R, Jacobsen H, Ouladdiaf B, Ivanov A, Piovano A, Tejsner T, Feng Z, Wang H, Su H, Guo Y, Shi Y and Boothroyd A T 2019 Phys. Rev. B 100 144431
[13] Zhang T T, Yilmaz T, Vescovo E, Li H X, Moore R G, Lee H N, Miao H, Murakami S and McGuireMA 2022 npj Comput. Mater. 022 00838
[14] Burkov A, Hook M and Balents L 2011 Phys. Rev. B 84 235126
[15] Hao Z, Chen W, Wang Y, Li J, Ma X M, Hao Y J, Lu R, Shen Z, Jiang Z, Liu W, Jiang Q, Yang Y, Lei X, Wang L, Fu Y, Zhou L, Huang L, Liu Z, Ye M, Shen D, Mei J, He H, Liu C, Deng K, Liu C, Liu Q and Chen C 2021 Phys. Rev. B 104 115158
[16] Hong G H, Wang C W, Chen J J, Cui S T, Yang H F, Liang A J, Liu S, Lv Y Y, Zhou J, Chen Y B, Yao S H, Lu M H, Chen Y F, Wang M X, Yang L X, Liu Z K and Chen Y L 2018 Chin. Phys. B 27 017105
[17] Schoop L M, Ali M N, Straér C, Topp A, Varykhalov A, Marchenko D, Duppel V, Parkin S S P, Lotsch B V and Ast C R 2015 Nat. Commun. 7 11696
[18] Fu B B, Yi C J, Zhang T T, Caputo M, Ma J Z, Gao X, Lv B Q, Kong L Y, Huang Y B, Richard P, Shi M, Strocov V N, Fang C, Weng H M, Shi Y G, Qian T and Ding H 2019 Sci. Adv. 5 6459
[19] Chen C, Xu X, Jiang J, Wu S C, Qi Y P, Yang L X, Wang M X, Sun Y, Schröoter N B M, Yang H F, Schoop L M, Lv Y Y, Zhou J, Chen Y B, Yao S H, Lu M H, Chen Y F, Felser C, Yan B H, Liu Z K and Chen Y L 2017 Phys. Rev. B 95 125126
[20] Wang Y, Qian Y T, Yang M, Chen H X, Li C, Tan Z Y, Cai Y Q, Zhao W J, Gao S Y, Feng Y, Kumar S, Schwier E F, Zhao L, Weng H, Shi Y, Wang G, Song Y, Huang Y, Shimada K, Xu Z, Zhou X J and Liu G 2021 Phys. Rev. B 103 125131
[21] Inada Y, Thamizhavel A, Yamagami H, Takeuchi T, Sawai Y, Ikeda S, Shishido H, Okubo T, Yamada M, Sugiyama K, Nakamura N, Yamamoto T, Kindo K, Ebihara T, Galatanu A, Yamamoto E, Settai R and Onuki Y 2002 Philosophical Magazine B 82 1867
[22] Jobiliong E, Brooks J S, Choi E S, Lee H and Fisk Z 2005 Phys. Rev. B 72 104428
[23] Patil S, Medicherla V R R, Singh R S, Pandey S K, Sampathkumaran E V and K Maiti 2010 Phys. Rev. B 82 104428
[24] Haule K, Yee C H and Kim K 2010 Phys. Rev. B 81 195107
[25] Blaha P, Schwarz K, Tran F, Laskowski R, Madsen G K H and Marks L D 2020 J. Chem. Phys. 152 074101
[26] Shim J H, Haule K and Kotliar G 2007 Science 318 1615
[27] Nam T S, Kang C J, Ryu D C, Kim J, Kim H, Kim K and Min B I 2019 Phys. Rev. B 99 125115
[28] Lu H Y and Huang L 2016 Phys. Rev. B 94 075132
[29] Zhu X G, Liu Y, Zhao Y W, Wang Y C, Zhang Y, Lu C, Duan Y, Xie D H, Feng W and Jian D 2020 npj Quantum Mater. 5 47
[30] Wang Y C, Xu Y J, Liu Y, Han X J, Zhu X G, Yang Y F, Bi Y, Liu H F and Song H F 2021 Phys. Rev. B 103 165140
[31] Chen Q Y, Feng W, Xie D H, Lai X C, Zhu X G and Huang L 2018 Phys. Rev. B 97 155155
[32] Shen S W, Qin T, Gao J J, Wen C, Wang J H, Wang W, Li J, Luo X, Lu W J and Sun Y P 2022 Chin. Phys. Lett. 39 077401
[33] Xu B, Liu R, Wo H L, Liao Z Y, Yi S H, Li C H, Zhao J, Qiu X G, Yin Z P and Bernhard C 2025 arXiv: 2502.20796 [cond-mat.str-el]
[34] Jarrell M and Gubernatis J E 1996 Phys. Rep. 269 133
[35] Cao C, Zhi G X and Zhu J X 2020 Phys. Rev. Lett. 124 166403
[36] Ma H T, Ming X, Zheng X J,Wen J F,Wang Y C, Liu Y and Li H 2023 Phys. Rev. B 107 075124
[37] Sologub O, Noel H, Leithe-Jasper A, Rogl P and Bodak O I 1995 J. Solid State Chem. 115 441
[38] Thorton M J, Armitage J G M, Tomka G J, Riedi P C, Mitchel R H, Houshiar M, Adroja D T, Rainford B D and Fort D 1998 J. Phys: Condens. Matter 10 9485
[39] Myers K D, Bud’ko S L, Fisher I R, Islam Z, Kleinke H, Lacerda A H and Canfield P C 1999 J. Magn. Magn. Mater. 205 27
[40] Nam T S, Kim J, Kang C J, Kim K and Min B I 2021 Phys. Rev. B 103 045101
[41] Burdin S, Georges A and Grempel D R 2000 Phys. Rev. Lett. 85 1048
[42] Rosmus M, Olszowska N, Bukowski Z, Starowicz P, Piekarz P and Ptok A 2022 Materials 15 7168
[43] Young S M and Kane C L 2015 Phys. Rev. Lett. 115 126803
[44] Gao J C, Wu Q S, Persson C and Wang Z J 2021 Comput. Phys. Commun. 261 107760
[45] Steglich F 2023 arXiv: 2312.11162 [cond-mat.str-el]
[46] Wu H, Hallas A M, Cai X, Huang J, Oh J S, Loganathan V, Weiland A, McCandless G T, Chan J Y, Mo S K, Lu D, Hashimoto M, Denlinger J, Birgeneau R J, Nevidomskyy A H, Li G, Morosan E and Yi M 2022 npj Quantum Mater. 7 31
[47] Zhang S K, Xu Y J, Li G J, Wang J S, Zhou Z P and An Y P 2025 arXiv: 2502.13585 [cond-mat.str-el]
[1] Crystal structure, magnetic properties, and tunable Kondo effect in a new compound Nd5ScSb12
Yi-Ran Li(李祎冉), Na Li(李娜), Ping Su(苏平), Hui Liang(梁慧), Kai-Yuan Hu(胡开源), Ying Zhou(周颖), Dan-Dan Wu(吴丹丹), Yan Sun(孙燕), Qiu-Ju Li(李秋菊), Xia Zhao(赵霞), Xue-Feng Sun(孙学峰), and Yi-Yan Wang(王义炎). Chin. Phys. B, 2025, 34(6): 067502.
[2] Nonlinear current response and electric quantum oscillations in the Dirac semimetal Cd3As2
Hao-Nan Cui(崔浩楠), Ze-Nan Wu(吴泽南), Jian-Kun Wang(王建坤), Guang-Yu Zhu(祝光宇), Jia-Jie Yang(杨佳洁), Wen-Zhuang Zheng(郑文壮), Zhi-Min Liao(廖志敏), Shuo Wang(王硕), Ben-Chuan Lin(林本川), and Dapeng Yu(俞大鹏). Chin. Phys. B, 2023, 32(8): 087306.
[3] Negative magnetoresistance in Dirac semimetal Cd3As2 with in-plane magnetic field perpendicular to current
Hao-Nan Cui(崔浩楠), Guang-Yu Zhu(祝光宇), Jian-Kun Wang(王建坤), Jia-Jie Yang(杨佳洁), Wen-Zhuang Zheng(郑文壮), Ben-Chuan Lin(林本川), Zhi-Min Liao(廖志敏), Shuo Wang(王硕), and Da-Peng Yu(俞大鹏). Chin. Phys. B, 2023, 32(7): 077305.
[4] Structural, electronic and magnetic properties of Fe-doped strontium ruthenates
Nan Liu(刘楠), Xiao-Chao Wang(王晓超), and Liang Si(司良). Chin. Phys. B, 2023, 32(11): 117101.
[5] Uniaxial stress effect on quasi-one-dimensional Kondo lattice CeCo2Ga8
Kangqiao Cheng(程康桥), Binjie Zhou(周斌杰), Cuixiang Wang(王翠香), Shuo Zou(邹烁), Yupeng Pan(潘宇鹏), Xiaobo He(何晓波), Jian Zhang(张健), Fangjun Lu(卢方君), Le Wang(王乐), Youguo Shi(石友国), and Yongkang Luo(罗永康). Chin. Phys. B, 2022, 31(6): 067104.
[6] Chiral splitting of Kondo peak in triangular triple quantum dot
Yi-Ming Liu(刘一铭), Yuan-Dong Wang(王援东), and Jian-Hua Wei(魏建华). Chin. Phys. B, 2022, 31(5): 057201.
[7] Kondo screening cloud in a superconductor with mixed s-wave and p-wave pairing states
Zhen-Zhen Huang(黄真真), Xiong-Tao Peng(彭雄涛), Wan-Sheng Wang(王万胜), and Jin-Hua Sun(孙金华). Chin. Phys. B, 2022, 31(10): 107101.
[8] Two-dimensional topological semimetals
Xiaolong Feng(冯晓龙), Jiaojiao Zhu(朱娇娇), Weikang Wu(吴维康), and Shengyuan A. Yang(杨声远). Chin. Phys. B, 2021, 30(10): 107304.
[9] Capacitive coupling induced Kondo-Fano interference in side-coupled double quantum dots
Fu-Li Sun(孙复莉), Yuan-Dong Wang(王援东), Jian-Hua Wei(魏建华), Yi-Jing Yan(严以京). Chin. Phys. B, 2020, 29(6): 067204.
[10] SymTopo:An automatic tool for calculating topological properties of nonmagnetic crystalline materials
Yuqing He(贺雨晴), Yi Jiang(蒋毅), Tiantian Zhang(张田田), He Huang(黄荷), Chen Fang(方辰), Zhong Jin(金钟). Chin. Phys. B, 2019, 28(8): 087102.
[11] Structural, elastic, and electronic properties of topological semimetal WC-type MX family by first-principles calculation
Sami Ullah, Lei Wang(王磊), Jiangxu Li(李江旭), Ronghan Li(李荣汉), Xing-Qiu Chen(陈星秋). Chin. Phys. B, 2019, 28(7): 077105.
[12] Mott transition in ruby lattice Hubbard model
An Bao(保安). Chin. Phys. B, 2019, 28(5): 057101.
[13] Phase diagram characterized by transmission in a triangular quantum dot
Jin Huang(黄金), Wei-Zhong Wang(王为忠). Chin. Phys. B, 2018, 27(11): 117303.
[14] Voltage-controlled Kosterlitz-Thouless transitions and various kinds of Kondo behaviors in a triple dot device
Yong-Chen Xiong(熊永臣), Jun Zhang(张俊), Wang-Huai Zhou(周望怀), Amel Laref. Chin. Phys. B, 2017, 26(9): 097102.
[15] Topological nodal line semimetals
Chen Fang(方辰), Hongming Weng(翁红明), Xi Dai(戴希), Zhong Fang(方忠). Chin. Phys. B, 2016, 25(11): 117106.
No Suggested Reading articles found!