Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(6): 067502    DOI: 10.1088/1674-1056/adc2df
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Crystal structure, magnetic properties, and tunable Kondo effect in a new compound Nd5ScSb12

Yi-Ran Li(李祎冉)1, Na Li(李娜)1,†, Ping Su(苏平)1, Hui Liang(梁慧)1, Kai-Yuan Hu(胡开源)1, Ying Zhou(周颖)1, Dan-Dan Wu(吴丹丹)1, Yan Sun(孙燕)1, Qiu-Ju Li(李秋菊)2, Xia Zhao(赵霞)3,‡, Xue-Feng Sun(孙学峰)1,§, and Yi-Yan Wang(王义炎)1,¶
1 Anhui Provincial Key Laboratory of Magnetic Functional Materials and Devices, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China;
2 School of Physics and Optoelectronic Engineering, Anhui University, Hefei 230601, China;
3 School of Physical Sciences, University of Science and Technology of China, Hefei 230026, China
Abstract  The exploration and synthesis of new materials are important for materials science and condensed matter physics. Here, we report the crystal structure, magnetic properties, and electrical transport properties of the single crystals of Nd5ScSb12, which is a quasi-one-dimensional new compound. Nd5ScSb12 exhibits antiferromagnetic transition in both directions perpendicular and parallel to the long axis. Moreover, the magnetic field-dependent magnetization reveals two metamagnetic transitions. The electrical transport properties have been measured on the same sample but with different measurement lengths between the electrodes of the voltage. The resistivity exhibits the metallic behavior. At low temperatures, the Kondo effect and negative transverse magnetoresistance (MR) (BI) have been observed. Interestingly, the measurement length has a significant impact on the Kondo effect and negative MR, providing an intuitive new approach to regulate the Kondo effect. As the measurement length increases, the Kondo effect and negative MR become more pronounced. This not only indicates that the interaction between magnetic impurities and conduction electrons dominates the electrical transport of Nd5ScSb12 at low temperatures, but also confirms that the negative MR originates from the suppression of the Kondo effect.
Keywords:  Kondo effect      Nd5ScSb12 single crystal      metamagnetic transitions  
Received:  24 January 2025      Revised:  17 March 2025      Accepted manuscript online:  20 March 2025
PACS:  75.47.-m (Magnetotransport phenomena; materials for magnetotransport)  
  72.15.Qm (Scattering mechanisms and Kondo effect)  
  75.50.Ee (Antiferromagnetics)  
  75.30.Kz (Magnetic phase boundaries (including classical and quantum magnetic transitions, metamagnetism, etc.))  
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2023YFA1406500), the National Natural Science Foundation of China (Grant Nos. 12474098, 12274388, 12174361, 12404043, and 12204004), and the Natural Science Foundation of Anhui Province, China (Grant No. 2408085QA024).
Corresponding Authors:  Na Li, Xia Zhao, Xue-Feng Sun, Yi-Yan Wang     E-mail:  nli@ahu.edu.cn;xiazhao@ustc.edu.cn;xfsun@ahu.edu.cn;wyy@ahu.edu.cn

Cite this article: 

Yi-Ran Li(李祎冉), Na Li(李娜), Ping Su(苏平), Hui Liang(梁慧), Kai-Yuan Hu(胡开源), Ying Zhou(周颖), Dan-Dan Wu(吴丹丹), Yan Sun(孙燕), Qiu-Ju Li(李秋菊), Xia Zhao(赵霞), Xue-Feng Sun(孙学峰), and Yi-Yan Wang(王义炎) Crystal structure, magnetic properties, and tunable Kondo effect in a new compound Nd5ScSb12 2025 Chin. Phys. B 34 067502

[1] Chen R and Wang N 2018 Rep. Prog. Phys. 82 012503
[2] Bao J K, Tang Z T, Jung H J, Liu J Y, Liu Y, Li L, Li Y K, Xu Z A, Feng C M, Chen H, et al. 2018 J. Am. Chem. Soc. 140 4391
[3] Bao J K, Liu J Y, Ma C W, Meng Z H, Tang Z T, Sun Y L, Zhai H F, Jiang H, Bai H, Feng C M, Xu Z A and Cao G H 2015 Phys. Rev. X 5 011013
[4] Tang Z T, Bao J K, Liu Y, Sun Y L, Ablimit A, Zhai H F, Jiang H, Feng C M, Xu Z A and Cao G H 2015 Phys. Rev. B 91 020506
[5] Tang Z T, Bao J K, Wang Z, Bai H, Jiang H, Liu Y, Zhai H F, Feng C M, Xu Z A and Cao G H 2015 Sci. China-Mater. 58 16
[6] Grüner G 1988 Rev. Mod. Phys. 60 1129
[7] Haldane F D M 1983 Phys. Rev. Lett. 50 1153
[8] Khoury J F, Han B, Jovanovic M, Singha R, Song X, Queiroz R, Ong N P and Schoop L M 2022 J. Am. Chem. Soc. 144 9785
[9] Yi Z K, Ouyang Z F, Guo P J, Liang H, Li Y R, Su P, Li N, Zhou Y, Wu D D, Sun Y, Yue X Y, Li Q J, Wang S G, Sun X F and Wang Y Y 2024 Adv. Mater. 36 2400166
[10] Han X, Li Y, Yang M, Miao S, Yan D and Shi Y 2023 Phys. Rev. Mater. 7 124406
[11] Khoury J F, Han B, Jovanovic M, Queiroz R, Yang X, Singha R, Salters T H, Pollak C J, Lee S B, Ong N and Schoop L M 2024 Adv. Mater. 36 2404553
[12] Han X, Pi H, Yan D, Zhang R, Li Y, Wang X, Dun Z, Wang Z, Feng H L, Wu Q and Shi Y 2023 Phys. Rev. B 108 075157
[13] Zhang C, Wang Y, Zheng J, Du L, Li Y, Han X, Liu E, Wu Q and Shi Y 2024 Phys. Rev. Mater. 8 034402
[14] Duan L, Wang X C, Zhang J, Hu Z, Zhao J F, Feng Y G, Zhang H L, Lin H J, Chen C T, Wu W, Li Z, Wang R, Zhang J F, Xiang T and Jin C Q 2022 Phys. Rev. B 106 184405
[15] Duan L, Wang X, Zhan F, Zhang J, Hu Z, Zhao J, Li W, Cao L, Deng Z, Yu R, Lin H J, Chen C T, Wang R and Jin C 2020 Sci. China-Mater. 63 1750
[16] Duan L, Zhang J, Wang X, Zhao J, Cao L, Li W, Deng Z, Yu R, Li Z and Jin C 2020 J. Alloys Compd. 831 154697
[17] Wang Y Y, Yi Z K, Li N, Li Y R, Su P, Zhou Y,Wu D D, Sun Y, Li Q J, Yue X Y, Zhao X, Sun X F and Liang H 2024 Phys. Rev. B 110 134432
[18] Hayami S and Kusunose H 2022 J. Phys. Soc. Jpn. 91 123701
[19] Ritter C, Pathak A, Filippone R, Provino A, Dhar S and Manfrinetti P 2021 J. Phys.: Condens. Matter 33 245801
[20] Murakami T, Yamamoto T, Takeiri F, Nakano K and Kageyama H 2017 Inorg. Chem. 56 5041
[21] Borisenko S, Evtushinsky D, Gibson Q, Yaresko A, Koepernik K, Kim T, Ali M, van den Brink J, Hoesch M, Fedorov A, Haubold E, Kushnirenko Y, Soldatov I, Schäfer R and Cava R J 2019 Nat. Commun. 10 3424
[22] Liu J, Hu J, Zhang Q, Graf D, Cao H B, Radmanesh S, Adams D, Zhu Y, Cheng G, Liu X, PhelanW,Wei J, Jaime M, Balakirev F, Tennant D, DiTusa J, Chiorescu I, Spinu L and Mao Z 2017 Nat. Mater. 16 905
[23] Wang Y Y, Xu S, Sun L L and Xia T L 2018 Phys. Rev. Mater. 2 021201
[24] Zhao K, Deng H, Chen H, Ross K A, Petríček V, Günther G, Russina M, Hutanu V and Gegenwart P 2020 Science 367 1218
[25] Li N, Huang Q, Yue X Y, Guang S K, Xia K, Wang Y Y, Li Q J, Zhao X, Zhou H D and Sun X F 2022 Phys. Rev. B 106 014416
[26] Kondo J 1970 Solid State Phys. 23 183
[27] Checkelsky J G, Bernevig B A, Coleman P, Si Q and Paschen S 2024 Nat. Rev. Mater. 9 509
[28] Blachly M A and Giordano N 1995 Phys. Rev. B 51 12537
[29] Blachly M A and Giordano N 1992 Phys. Rev. B 46 2951
[30] Chen G and Giordano N 1991 Phys. Rev. Lett. 66 209
[1] Interacting Dirac semi-metal state in nonsymmorphic Kondo-lattice compound CeAgSb2
Da-Liang Guo(郭达良), and Huan Li(黎欢). Chin. Phys. B, 2025, 34(6): 067102.
[2] Uniaxial stress effect on quasi-one-dimensional Kondo lattice CeCo2Ga8
Kangqiao Cheng(程康桥), Binjie Zhou(周斌杰), Cuixiang Wang(王翠香), Shuo Zou(邹烁), Yupeng Pan(潘宇鹏), Xiaobo He(何晓波), Jian Zhang(张健), Fangjun Lu(卢方君), Le Wang(王乐), Youguo Shi(石友国), and Yongkang Luo(罗永康). Chin. Phys. B, 2022, 31(6): 067104.
[3] Chiral splitting of Kondo peak in triangular triple quantum dot
Yi-Ming Liu(刘一铭), Yuan-Dong Wang(王援东), and Jian-Hua Wei(魏建华). Chin. Phys. B, 2022, 31(5): 057201.
[4] Kondo screening cloud in a superconductor with mixed s-wave and p-wave pairing states
Zhen-Zhen Huang(黄真真), Xiong-Tao Peng(彭雄涛), Wan-Sheng Wang(王万胜), and Jin-Hua Sun(孙金华). Chin. Phys. B, 2022, 31(10): 107101.
[5] Capacitive coupling induced Kondo-Fano interference in side-coupled double quantum dots
Fu-Li Sun(孙复莉), Yuan-Dong Wang(王援东), Jian-Hua Wei(魏建华), Yi-Jing Yan(严以京). Chin. Phys. B, 2020, 29(6): 067204.
[6] Phase diagram characterized by transmission in a triangular quantum dot
Jin Huang(黄金), Wei-Zhong Wang(王为忠). Chin. Phys. B, 2018, 27(11): 117303.
[7] Voltage-controlled Kosterlitz-Thouless transitions and various kinds of Kondo behaviors in a triple dot device
Yong-Chen Xiong(熊永臣), Jun Zhang(张俊), Wang-Huai Zhou(周望怀), Amel Laref. Chin. Phys. B, 2017, 26(9): 097102.
[8] Interaction and local magnetic moments of metal phthalocyanine and tetraphenylporphyrin molecules on noble metal surfaces
Song Bo-Qun (宋博群), Pan Li-Da (潘理达), Du Shi-Xuan (杜世萱), Gao Hong-Jun (高鸿钧). Chin. Phys. B, 2013, 22(9): 096801.
[9] Interplay of superconductivity and d-f correlation in CeFeAs1-xPxO1-yFy
Luo Yong-Kang (罗永康), Li Yu-Ke (李玉科), Wang Cao (王操), Lin Xiao (林效), Dai Jian-Hui (戴建辉), Cao Guang-Han (曹光旱), Xu Zhu-An (许祝安). Chin. Phys. B, 2013, 22(8): 087415.
[10] Transport through artificial single-molecule magnets: Spin-pair state sequential tunneling and Kondo effects
Niu Peng-Bin (牛鹏斌), Wang Qiang (王强), Nie Yi-Hang (聂一行). Chin. Phys. B, 2013, 22(2): 027307.
[11] Transition from the Kondo effect to a Coulomb blockade in an electron shuttle
Zhang Rong (张荣), Chu Wei-Dong (楚卫东), Duan Su-Qing (段素青), Yang Ning (杨宁). Chin. Phys. B, 2013, 22(11): 117305.
[12] Spin-dependent transport through an interacting quantum dot system
Huang Rui (黄睿), Wu Shao-Quan (吴绍全), Yan Cong-Hua (闫从华). Chin. Phys. B, 2010, 19(7): 077302.
[13] Kondo transport through a quantum dot coupled with side quantum-dot structures
Jiang Zhao-Tan(江兆潭). Chin. Phys. B, 2010, 19(7): 077307.
[14] Magnetotransport through an Aharonov-Bohm ring with parallel double quantum dots coupled to ferromagnetic leads
Wu Shao-Quan(吴绍全), Hou Tao(侯涛), Zhao Guo-Ping(赵国平), and Yu Wan-Lun(余万伦). Chin. Phys. B, 2010, 19(4): 047202.
[15] Fano--Kondo effect in the T-shaped double quantum dots coupled to ferromagnetic leads
Hou Tao(侯涛), Wu Shao-Quan(吴绍全), Bi Ai-Hua(毕爱华), Yang Fu-Bin(羊富彬), Chen Jia-Feng(陈嘉峰), and Fan Meng(樊梦). Chin. Phys. B, 2009, 18(2): 783-789.
No Suggested Reading articles found!