Modulating electronic properties of carbon nanotube via constructing one-dimensional vdW heterostructures
Wenqi Lv(吕雯祺)1, Weili Li(李伟立)1, Wei Ji(季威)1,2, and Yanning Zhang(张妍宁)1,†
1 Institute of Fundamental and Frontier Sciences, Key Laboratory for Quantum Physics and Photonic Quantum Information of Ministry of Education, University of Electronic Science and Technology of China, Chengdu 610054, China; 2 Department of Physics and Beijing Key Laboratory of Optoelectronic Functional Materials and Micro-Nano Devices, Renmin University of China, Beijing 100872, China
Abstract Controlling charge polarity in the semiconducting single-walled carbon nanotubes (CNTs) by substitutional doping is a difficult work due to their extremely strong C-C bonding. In this work, an inner doping strategy is explored by filling CNTs with one-dimensional (1D)-Te nanowires to form Te@CNT-(16,0) 1D van der Waals heterostructures (1D-vdWHs). The systematic first-principles studies on the electronic properties of 1D-vdWHs show that N-type doping CNTs can be formed by charge transfer from Te nanowires to CNTs, without introducing additional carrier scattering. Particularly, contribution from both (e.g., Sc and Y) and Te atoms strengthens the charge transfer. The outside CNTs further confine the dispersion of Te-p orbitals in nanowires that deforms the C- states at the bottom of the conduction band to quasi sp hybridization. Our study provides an inner doping strategy that can effectively confine the charge polarity of CNTs and further broaden its applications in some novel nano-devices.
Wenqi Lv(吕雯祺), Weili Li(李伟立), Wei Ji(季威), and Yanning Zhang(张妍宁) Modulating electronic properties of carbon nanotube via constructing one-dimensional vdW heterostructures 2025 Chin. Phys. B 34 067303
[1] Franklin A D, Hersam M C and Wong H S P 2022 Science 378 726 [2] Lianmao P 2023 ACS Nano 17 22156 [3] Yifan L and Zhiyong Z 2022 Acta Phys. Sin. 71 068503 (in Chinese) [4] Lau C, Srimani T, Bishop M D, Hills G and Shulaker M M 2018 ACS Nano 12 10924 [5] Takenobu T, Takano T, Shiraishi M, Murakami Y, Ata M, Kataura H, Achiba Y and Iwasa Y 2003 Nat. Mater. 2 683 [6] Li Y, Li A, Li J, Tian H, Zhang Z, Zhu S, Zhang R, Liu S, Cao K, Kang L and Li Q 2023 ACS Nano 17 20112 [7] Liu S, Teng Y, Zhang Z, Lai J, Hu Z, Zhang W, Zhang W, Zhu J, Wang X, Li Y, Zhao J, Zhang Y, Qiu S, Zhou W, Cao K, Chen Q, Kang L and Li Q 2024 Nano Lett. 24 741 [8] Pham T, Oh S, Stetz P, Onishi S, Kisielowski C, Cohen M L and Zettl A 2018 Science 361 263 [9] Stonemeyer S, Cain J D, Oh S, Azizi A, Elasha M, Thiel M, Song C, Ercius P, Cohen M L and Zettl A 2020 J. Am. Chem. Soc 143 4563 [10] Teng Y, Zhang Y, Xie X, Yao J, Zhang Z, Geng L, Zhao P, Yang C, Gong W, Wang X, Hu Z, Kang L, Fang X and Li Q 2024 J. Am. Chem. Soc 146 6231 [11] Zhu M, Yin H, Cao J, Xu L, Lu P, Liu Y, Ding L, Fan C, Liu H, Zhang Y, Jin Y, Peng L, Jin C and Zhang Z 2024 Adv. Mater. 36 2403743 [12] Cambré S, Liu M, Levshov D, Otsuka K, Maruyama S and Xiang R 2021 Small 17 2102585 [13] Chi Xu J L M W X Z and Hangjun L 2023 Chin. Phys. B 32 76402 [14] Feng Y, Li H, Inoue T, Chiashi S, Rotkin S V, Xiang R and Maruyama S 2021 ACS Nano 15 5600 [15] Guo J, Xiang R, Cheng T, Maruyama S and Li Y 2021 ACS Nanosci. Au 2 3 [16] Kanda N, Nakanishi Y, Liu D, Liu Z, Inoue T, Miyata Y, Tománek D and Shinohara H 2020 Nanoscale 12 17185 [17] Nagata M, Shukla S, Nakanishi Y, Liu Z, Lin Y C, Shiga T, Nakamura Y, Koyama T, Kishida H, Inoue T, Kanda N, Ohno S, Sakagawa Y, Suenaga K and Shinohara H 2019 Nano Lett. 19 4845 [18] Lin X, Deng J, Bai Y, Huo D, Zhu C, Pan Z, Jian T, Liu C and Zhang C 2024 ACS Nano 18 13241 [19] Blöchl P E 1994 Phys. Rev. B 50 17953 [20] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169 [21] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865 [22] Grimme S, Antony J, Ehrlich S and Krieg H 2010 J. Chem. Phys. 132 154104 [23] Grimme S, Ehrlich S and Goerigk L 2011 J. Comput. Chem. 32 1456 [24] Shang C, Fu L, Zhou S and Zhao J 2020 JACS Au 1 147 [25] Zhu H, Wang Q, Zhang C, Addou R, Cho K, Wallace R M and Kim M J 2017 Adv. Mater. 29 [26] Yu Y, Wang G, Tan Y, Wu N, Zhang X A and Qin S 2017 Nano Lett. 18 675 [27] Becke A D and Edgecombe K E 1990 J. Chem. Phys. 92 5397 [28] Koumpouras K and Larsson J A 2020 J. Phys.: Condens. Matter 32 315502 [29] Silvi B and Savin A 1994 Nature 371 683 [30] Chen A, Wang Z, Zhang X, Chen L, Hu X, Han Y, Cai J, Zhou Z and Li J 2022 Chem. Mater. 34 5571 [31] Li Y, Su L, Lu Y, Luo Q, Liang P, Shu H and Chen X 2023 InfoMat 5 12407 [32] Yan J, Cao D, Li M, Luo Q, Chen X, Su l and Shu H 2023 Small 19 2303675 [33] Chang W, Liu F, Liu Y, Zhu T, Fang L, Li Q, Liu Y and Zhao X 2021 Carbon 183 571 [34] Liu F,Wang Q, Tang Y, DuW, ChangW, Fu Z, Zhao X and Liu Y 2023 Nanoscale 15 6143
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.