Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(6): 067303    DOI: 10.1088/1674-1056/adc406
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Modulating electronic properties of carbon nanotube via constructing one-dimensional vdW heterostructures

Wenqi Lv(吕雯祺)1, Weili Li(李伟立)1, Wei Ji(季威)1,2, and Yanning Zhang(张妍宁)1,†
1 Institute of Fundamental and Frontier Sciences, Key Laboratory for Quantum Physics and Photonic Quantum Information of Ministry of Education, University of Electronic Science and Technology of China, Chengdu 610054, China;
2 Department of Physics and Beijing Key Laboratory of Optoelectronic Functional Materials and Micro-Nano Devices, Renmin University of China, Beijing 100872, China
Abstract  Controlling charge polarity in the semiconducting single-walled carbon nanotubes (CNTs) by substitutional doping is a difficult work due to their extremely strong C-C bonding. In this work, an inner doping strategy is explored by filling CNTs with one-dimensional (1D)-TM6Te6 nanowires to form TM6Te6@CNT-(16,0) 1D van der Waals heterostructures (1D-vdWHs). The systematic first-principles studies on the electronic properties of 1D-vdWHs show that N-type doping CNTs can be formed by charge transfer from TM6Te6 nanowires to CNTs, without introducing additional carrier scattering. Particularly, contribution from both TM (e.g., Sc and Y) and Te atoms strengthens the charge transfer. The outside CNTs further confine the dispersion of Te-p orbitals in nanowires that deforms the C-π states at the bottom of the conduction band to quasi sp3 hybridization. Our study provides an inner doping strategy that can effectively confine the charge polarity of CNTs and further broaden its applications in some novel nano-devices.
Keywords:  electronic modification of CNTs      one-dimensional (1D) vdW heterostructures      inner doping      density functional theory  
Received:  28 January 2025      Revised:  22 March 2025      Accepted manuscript online:  24 March 2025
PACS:  73.40.-c (Electronic transport in interface structures)  
  73.63.Fg (Nanotubes)  
  73.20.-r (Electron states at surfaces and interfaces)  
  73.22.-f (Electronic structure of nanoscale materials and related systems)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 92477205).
Corresponding Authors:  Yanning Zhang     E-mail:  yanningz@uestc.edu.cn

Cite this article: 

Wenqi Lv(吕雯祺), Weili Li(李伟立), Wei Ji(季威), and Yanning Zhang(张妍宁) Modulating electronic properties of carbon nanotube via constructing one-dimensional vdW heterostructures 2025 Chin. Phys. B 34 067303

[1] Franklin A D, Hersam M C and Wong H S P 2022 Science 378 726
[2] Lianmao P 2023 ACS Nano 17 22156
[3] Yifan L and Zhiyong Z 2022 Acta Phys. Sin. 71 068503 (in Chinese)
[4] Lau C, Srimani T, Bishop M D, Hills G and Shulaker M M 2018 ACS Nano 12 10924
[5] Takenobu T, Takano T, Shiraishi M, Murakami Y, Ata M, Kataura H, Achiba Y and Iwasa Y 2003 Nat. Mater. 2 683
[6] Li Y, Li A, Li J, Tian H, Zhang Z, Zhu S, Zhang R, Liu S, Cao K, Kang L and Li Q 2023 ACS Nano 17 20112
[7] Liu S, Teng Y, Zhang Z, Lai J, Hu Z, Zhang W, Zhang W, Zhu J, Wang X, Li Y, Zhao J, Zhang Y, Qiu S, Zhou W, Cao K, Chen Q, Kang L and Li Q 2024 Nano Lett. 24 741
[8] Pham T, Oh S, Stetz P, Onishi S, Kisielowski C, Cohen M L and Zettl A 2018 Science 361 263
[9] Stonemeyer S, Cain J D, Oh S, Azizi A, Elasha M, Thiel M, Song C, Ercius P, Cohen M L and Zettl A 2020 J. Am. Chem. Soc 143 4563
[10] Teng Y, Zhang Y, Xie X, Yao J, Zhang Z, Geng L, Zhao P, Yang C, Gong W, Wang X, Hu Z, Kang L, Fang X and Li Q 2024 J. Am. Chem. Soc 146 6231
[11] Zhu M, Yin H, Cao J, Xu L, Lu P, Liu Y, Ding L, Fan C, Liu H, Zhang Y, Jin Y, Peng L, Jin C and Zhang Z 2024 Adv. Mater. 36 2403743
[12] Cambré S, Liu M, Levshov D, Otsuka K, Maruyama S and Xiang R 2021 Small 17 2102585
[13] Chi Xu J L M W X Z and Hangjun L 2023 Chin. Phys. B 32 76402
[14] Feng Y, Li H, Inoue T, Chiashi S, Rotkin S V, Xiang R and Maruyama S 2021 ACS Nano 15 5600
[15] Guo J, Xiang R, Cheng T, Maruyama S and Li Y 2021 ACS Nanosci. Au 2 3
[16] Kanda N, Nakanishi Y, Liu D, Liu Z, Inoue T, Miyata Y, Tománek D and Shinohara H 2020 Nanoscale 12 17185
[17] Nagata M, Shukla S, Nakanishi Y, Liu Z, Lin Y C, Shiga T, Nakamura Y, Koyama T, Kishida H, Inoue T, Kanda N, Ohno S, Sakagawa Y, Suenaga K and Shinohara H 2019 Nano Lett. 19 4845
[18] Lin X, Deng J, Bai Y, Huo D, Zhu C, Pan Z, Jian T, Liu C and Zhang C 2024 ACS Nano 18 13241
[19] Blöchl P E 1994 Phys. Rev. B 50 17953
[20] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169
[21] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[22] Grimme S, Antony J, Ehrlich S and Krieg H 2010 J. Chem. Phys. 132 154104
[23] Grimme S, Ehrlich S and Goerigk L 2011 J. Comput. Chem. 32 1456
[24] Shang C, Fu L, Zhou S and Zhao J 2020 JACS Au 1 147
[25] Zhu H, Wang Q, Zhang C, Addou R, Cho K, Wallace R M and Kim M J 2017 Adv. Mater. 29
[26] Yu Y, Wang G, Tan Y, Wu N, Zhang X A and Qin S 2017 Nano Lett. 18 675
[27] Becke A D and Edgecombe K E 1990 J. Chem. Phys. 92 5397
[28] Koumpouras K and Larsson J A 2020 J. Phys.: Condens. Matter 32 315502
[29] Silvi B and Savin A 1994 Nature 371 683
[30] Chen A, Wang Z, Zhang X, Chen L, Hu X, Han Y, Cai J, Zhou Z and Li J 2022 Chem. Mater. 34 5571
[31] Li Y, Su L, Lu Y, Luo Q, Liang P, Shu H and Chen X 2023 InfoMat 5 12407
[32] Yan J, Cao D, Li M, Luo Q, Chen X, Su l and Shu H 2023 Small 19 2303675
[33] Chang W, Liu F, Liu Y, Zhu T, Fang L, Li Q, Liu Y and Zhao X 2021 Carbon 183 571
[34] Liu F,Wang Q, Tang Y, DuW, ChangW, Fu Z, Zhao X and Liu Y 2023 Nanoscale 15 6143
[1] Anomalous ultrafast thermalization of photoexcited carriers in two-dimensional materials induced by orbital coupling
Zhuoqun Wen(文卓群), Haiyu Zhu(诸海渝), Wen-Hao Liu(刘文浩), Zhi Wang(王峙), Wen Xiong(熊稳), and Xingzhan Wei(魏兴战). Chin. Phys. B, 2025, 34(7): 077103.
[2] Unveiling the thermal transport mechanisms in novel carbon-based graphene-like materials using machine-learning potential
Yao-Yuan Zhang(章耀元), Meng-Qiu Long(龙孟秋), Sai-Jie Cheng(程赛杰), and Wu-Xing Zhou(周五星). Chin. Phys. B, 2025, 34(6): 067101.
[3] High-order harmonic generation of methane in an elliptically polarized field
Shu-Shan Zhou(周书山), Yu-Long Li(李玉龙), Zhi-Xue Zhao(赵志学), Man Xing(幸满), Nan Xu(许楠), Hao Wang(王浩), Jun Wang(王俊), Xi Zhao(赵曦), and Mu-Hong Hu(胡木宏). Chin. Phys. B, 2025, 34(6): 063202.
[4] Photophysical property of fluorescent guanine analogs for selectively recognizing acetylated cytosine: A theoretical study
Xiaolin Chen(陈晓琳), Xixi Cui(崔习习), Yongkang Lyu(吕永康), Chenyang Zhang(张晨阳), Changzhe Zhang(张常哲), and Qingtian Meng(孟庆田). Chin. Phys. B, 2025, 34(5): 053102.
[5] Exploring superconductivity in dynamically stable carbon-boron clathrates trapping molecular hydrogen
Akinwumi Akinpelu, Mangladeep Bhullar, Timothy A. Strobel, and Yansun Yao. Chin. Phys. B, 2025, 34(3): 036103.
[6] Insights to unusual antiferromagnetic behavior and exchange coupling interactions in Mn23C6
Ze-Kun Yu(于泽坤), Chao Zhou(周超), Kuo Bao(包括), Zhao-Qing Wang(王兆卿), En-Xuan Li(李恩萱), Jin-Ming Zhu(朱金铭), Yuan Qin(秦源), Yu-Han Meng(孟钰涵), Pin-Wen Zhu(朱品文), Qiang Tao(陶强), and Tian Cui(崔田). Chin. Phys. B, 2025, 34(3): 037101.
[7] Half-metallic ferromagnetic Weyl fermions related to dynamic correlations in the zinc-blende compound VAs
Xianyong Ding(丁献勇), Haoran Wei(魏皓然), Ruixiang Zhu(朱瑞翔), Xiaoliang Xiao(肖晓亮), Xiaozhi Wu(吴小志), and Rui Wang(王锐). Chin. Phys. B, 2024, 33(9): 097103.
[8] Comparative study of nudged elastic band and molecular dynamics methods for diffusion kinetics in solid-state electrolytes
Aming Lin(林啊鸣), Jing Shi(石晶), Su-Huai Wei(魏苏淮), and Yi-Yang Sun(孙宜阳). Chin. Phys. B, 2024, 33(8): 086601.
[9] Rational molecular engineering towards efficient heterojunction solar cells based on organic molecular acceptors
Kaiyan Zhang(张凯彦), Peng Song(宋朋), Fengcai Ma(马凤才), and Yuanzuo Li(李源作). Chin. Phys. B, 2024, 33(6): 068402.
[10] Local thermal conductivity of inhomogeneous nano-fluidic films:A density functional theory perspective
Zongli Sun(孙宗利), Yanshuang Kang(康艳霜), and Yanmei Kang(康艳梅). Chin. Phys. B, 2024, 33(4): 046503.
[11] Plasmon-induced nonlinear response on gold nanoclusters
Yuhui Song(宋玉慧), Yifei Cao(曹逸飞), Sichen Huang(黄思晨), Kaichao Li(李凯超), Ruhai Du(杜如海), Lei Yan(严蕾), Zhengkun Fu(付正坤), and Zhenglong Zhang(张正龙). Chin. Phys. B, 2024, 33(4): 044204.
[12] Microscopic mechanism of plasmon-mediated photocatalytic H2 splitting on Ag-Au alloy chain
Yuhui Song(宋玉慧), Yirui Lu(芦一瑞), Axin Guo(郭阿鑫), Yifei Cao(曹逸飞), Jinping Li(李金萍), Zhengkun Fu(付正坤), Lei Yan(严蕾), and Zhenglong Zhang(张正龙). Chin. Phys. B, 2024, 33(3): 033101.
[13] Structure, electronic, and nonlinear optical properties of superalkaline M3O (M = Li, Na) doped cyclo[18]carbon
Xiao-Dong Liu(刘晓东), Qi-Liang Lu(卢其亮), and Qi-Quan Luo(罗其全). Chin. Phys. B, 2024, 33(2): 023601.
[14] Databases of 2D material-substrate interfaces and 2D charged building blocks
Jun Deng(邓俊), Jinbo Pan(潘金波), and Shixuan Du(杜世萱). Chin. Phys. B, 2024, 33(2): 026101.
[15] Screening A-site ordered quadruple perovskites for alkaline hydrogen evolution reaction via unifying electronic configuration descriptor
Ning Sun(孙宁), Wenbo Li(李文博), Yang Qin(秦杨), Zhichuan Zheng(郑智钏), Bowen Zhang(张博文), Xiangjiang Dong(董祥江), Peng Wei(魏鹏), Yixiao Zhang(张艺潇), Xian He(何贤), Xinyu Xie(谢新煜), Kai Huang(黄凯), Lailei Wu(吴来磊), Ming Lei(雷鸣), Huiyang Gou(缑慧阳), and Runze Yu(于润泽). Chin. Phys. B, 2024, 33(12): 128101.
No Suggested Reading articles found!