Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(6): 066105    DOI: 10.1088/1674-1056/adc192
Special Issue: SPECIAL TOPIC — Structures and properties of materials under high pressure
SPECIAL TOPIC — Structures and properties of materials under high pressure Prev   Next  

Morphology-tuned phase transition of MnO2 nanorods under high pressure

Xue-Ting Zhang(张雪婷)1, Chen-Yi Li(李晨一)2, Hui Tian(田辉)3, Xin-Yue Wang(王心悦)1, Zong-Lun Li(李宗伦)2,4,†, and Quan-Jun Li(李全军)2
1 School of Medical Information Engineering, Shenyang Medical College, Shenyang 110034, China;
2 State Key Laboratory of High Pressure and Superhard Materials, Jilin University, Changchun 130012, China;
3 School of Science, Shenyang Ligong University, Shenyang 110159, China;
4 Spallation Neutron Source Science Center, Dongguan 523803, China
Abstract  The structural phase transition of MnO2 nanorods was investigated using in situ high pressure synchrotron x-ray diffraction (XRD) and transmission electron microscopy (TEM). At pressures exceeding 10.9 GPa, a second-order structural phase transition from tetragonal to orthogonal, which was accompanied by fine-scale crystal twinning phenomena, was observed in MnO2 nanorods. On account of the significant contribution of surface energy, the phase transition pressure exhibited appreciable hysteresis compared with the bulk counterparts, suggesting the enhanced structural stability of nanorod morphology. These findings reveal that the size and morphology exhibit a manifest correlation with the high pressure behavior of MnO2 nanomaterials, providing useful insights into the intricate interplay between structure and properties.
Keywords:  MnO2 nanorods      morphology      high pressure      phase transition  
Received:  06 February 2025      Revised:  15 March 2025      Accepted manuscript online:  18 March 2025
PACS:  61.50.Ks (Crystallographic aspects of phase transformations; pressure effects)  
  91.60.Gf (High-pressure behavior)  
  81.10.-h (Methods of crystal growth; physics and chemistry of crystal growth, crystal morphology, and orientation)  
  64.60.-i (General studies of phase transitions)  
Fund: We would like to thank Beijing Synchrotron Radiation Facility technical support groups. Project supported by China Postdoctoral Science Foundation (Grant No. 2023M742049), Guangdong Basic and Applied Basic Research Foundation (Grant No. 2023A1515110844), and the Innovative Training Program for College Students (Grant No. 20249076).
Corresponding Authors:  Zong-Lun Li     E-mail:  lizl20@mails.jlu.edu.cn

Cite this article: 

Xue-Ting Zhang(张雪婷), Chen-Yi Li(李晨一), Hui Tian(田辉), Xin-Yue Wang(王心悦), Zong-Lun Li(李宗伦), and Quan-Jun Li(李全军) Morphology-tuned phase transition of MnO2 nanorods under high pressure 2025 Chin. Phys. B 34 066105

[1] Aric‘o A S, Bruce P, Scrosati B, Tarascon J M and Van S W 2005 Nat. Mater. 4 366
[2] Tan C, Cao X, Wu X, He Q, Yang J, Zhang X, Chen J, Zhao W, Han S, Nam G, Sindoro M and Zhang H 2017 Chem. Rev. 117 6225
[3] Roduner E 2006 Chem. Soc. Rev. 35 583
[4] Li T, Wang S, Chen X, Chen C, Fang Y and Yang Z 2024 Chin. Phys. B 33 66401
[5] Chen J, Lv X, Li S, Dan Y, Huang Y and Cui T 2024 Chin. Phys. B 33 67104
[6] Wang S, Zhao X, Hu K, Feng B, Hou X, Zhang Y, Liu S, Shang Y, Liu Z, Yao M and Liu B 2024 Chin. Phys. B 33 98104
[7] Li Q, Cheng B, Tian B, Liu R, Liu B, Wang F, Chen Z, Zou B, Cui T and Liu B 2014 RSC Adv. 4 12873
[8] Yan X, Ren X, Zhu S, Van G D, Wang L, Zhao Y and Wang S 2021 Phys. Rev. B 103 L140103
[9] Wang L, YangW, Ding Y, Ren Y, Xiao S, Liu B, Sinogeikin S V, Meng Y, Gosztola D J, Shen G, Hemley R J, Mao W and Mao H 2010 Phys. Rev. Lett. 105 095701
[10] Das P P, Devi P S, Blom D A, Vogt T and Lee Y 2019 ACS Omega 4 10539
[11] Li Z, Liu B, Yu S, Wang J, Li Q, Zou B, Cui T, Liu Z, Chen Z and Liu J 2011 J. Phys. Chem. C 115 357
[12] Yang C, Liu Y, Sun H, Guo D, Li X, Li W, Liu B and Zhang X 2008 Nanotechnology 19 095704
[13] Yadav P, Bhaduri A and Thakur A 2023 ChemBioEng. Rev. 10 510
[14] Devaraj S and Munichandraiah N 2008 J. Phys. Chem. C 112 4406
[15] Gao X, Tian D, Shi Z, Zhang N, Sun R, Liu J, Tsai H S, Xiang X and Feng W 2024 Small 20 2405627
[16] Dou X, Chen Z, Zhang C, Li X, Qiao F, Song B, Wang S, Teng H and Lv Z 2024 Chin. Phys. B 33 114202
[17] Clendenen R and Drickamer H 1966 J. Chem. Phys. 44 4223
[18] Haines J, Léger J and Hoyau S 1995 J. Phys. Chem. Solids 56 965
[19] Curetti N, Merli M, Capella S, Benna P and Pavese A 2019 Phys. Chem. Miner. 46 987
[20] Yue B, Krug M, Sanchez V C, Merkel S and Hong F 2022 Phys. Rev. Mater. 6 053603
[21] Li Y, Wu X, Qin S and Wu Z 2006 Chin. J. High Press. Phys. 20 285
[22] Kaya L, Karatum O, Balamur R, Kaleli H N, Önal A, Vanalakar S A, Hasanreisoglu M and Nizamoglu S 2023 Adv. Sci. 10 2301854
[23] Song H, Xu L, Chen M, Cui Y, Wu C, Qiu J, Xu L, Cheng G and Hu X 2021 RSC Adv. 11 35494
[24] Gaikwad N K, Kulkarni A A, Beknalkar S A, Teli A M and Bhat T S 2024 J. Energy Storage 100 113418
[25] Toby B 2001 J. Appl. Crystallogr. 34 210
[26] Zhu S, Li L, Liu J,Wang H,Wang T, Zhang Y, Zhang L, Ruoff R S and Dong F 2018 ACS Nano 12 1033
[27] Zhan D, Zhang Q, Hu X and Peng T 2013 RSC Adv. 3 5141
[28] Wang G, Nie L and Yu S 2012 RSC Adv. 2 6216
[29] Baranov A N, Sokolov P S, Tafeenko V A, Lathe C, Zubavichus Y V, Veligzhanin A A, Chukichev M V and Solozhenko V L 2013 Chem. Mater. 25 1775
[30] Chen Z, Li G, Zheng H, Shu X, Zou J and Peng P 2017 Appl. Surf. Sci. 420 205
[31] Xiao G, Yang X, Zhang X, Wang K, Huang X, Ding Z, Ma Y, Zou G and Zou B 2015 J. Am. Chem. Soc. 137 10297
[32] Du X, An C, Chen X, Zhou Y, Zhang M, Wang S, Chen C, Zhou Y, Yang X and Yang Z 2023 Phys. Rev. B 108 014109
[33] Tian C, Huang X, Gao Y, Tian F, Liang M, Fang Y, Huang F and Cui T 2023 Phys. Rev. B 108 L180507
[34] Yue L, Xu D, Wei Z, Zhao T, Lin T, Tenne R, Zak A, Li Q and Liu B 2022 Materials 15 2838
[35] Paris E, Joseph B, Iadecola A, Marini C, Ishii H, Kudo K, Pascarelli S, Nohara M, Mizokawa T and Saini N L 2016 Phys. Rev. B 93 134109
[36] Cuartero V, Monteseguro V, Otero de la Roza A, El Idrissi M, Mathon O, Shinmei T, Irifune T and Sanson A 2020 Phys. Chem. Chem. Phys. 22 24299
[1] Pressure-induced band gap closing of lead-free halide double perovskite (CH3NH3)2PtI6
Siyu Hou(侯思羽), Jiaxiang Wang(王家祥), Yijia Huang(黄乙甲), Ruijing Fu(付瑞净), and Lingrui Wang(王玲瑞). Chin. Phys. B, 2025, 34(8): 086106.
[2] Growth diagram of AlN epilayers grown by plasma-assisted molecular beam epitaxy
Huan Liu(刘欢), Pengfei Shao(邵鹏飞), Yu Liu(柳裕), Qi Yao(姚齐), Tao Tao(陶涛), Zili Xie(谢自力), Dunjun Chen(陈敦军), Bin Liu(刘斌), Hai Lu(陆海), Rong Zhang(张荣), and Ke Wang(王科). Chin. Phys. B, 2025, 34(7): 077701.
[3] Role of symmetry in antiferromagnetic topological insulators
Sahar Ghasemi and Morad Ebrahimkhas. Chin. Phys. B, 2025, 34(7): 077302.
[4] Structural regulation and optical behavior of zero-dimensional Cu(I)-based organometallic halides under pressure
Runnan Ye(叶润楠), Jingtian Wang(王敬天), Jiayi Yang(杨佳毅), Xuchen Wang(王旭晨), Junce Lei(雷钧策), Wenya Zhao(赵文雅), Yufan Meng(孟雨凡), Guanjun Xiao(肖冠军), and Bo Zou(邹勃). Chin. Phys. B, 2025, 34(6): 066204.
[5] Band gap engineering and vibrational properties of van der Waals semiconductor ZnPSe3 under compression
Rouqiong Su(苏柔琼), Yuying Li(李玉莹), Chunhua Chen(陈春华), Yifang Yuan(袁亦方), and Haizhong Guo(郭海中). Chin. Phys. B, 2025, 34(6): 066205.
[6] Random flux manipulating topological phase transitions in Chern insulators
Jinkun Wang(王锦坤) and Wu-Ming Liu(刘伍明). Chin. Phys. B, 2025, 34(6): 067301.
[7] Layer-dependent structural stability and electronic properties of CrPS4 under high pressure
Jian Zhu(朱健), Dengman Feng(冯登满), Liangyu Wang(王亮予), Liang Li(李亮), Fangfei Li(李芳菲), Qiang Zhou(周强), and Yalan Yan(闫雅兰). Chin. Phys. B, 2025, 34(6): 066102.
[8] Bulk modulus of molecular crystals
Xudong Jiang(江旭东), Yajie Wang(汪雅洁), Kuo Li(李阔), and Haiyan Zheng(郑海燕). Chin. Phys. B, 2025, 34(6): 066201.
[9] Measurement of the eutectic point of Fe-C alloy under 5 Gpa
Ting Zhang(张亭), Xiuyan Wei(魏秀艳), Zuguang Hu(胡祖光), Jianyun Yang(杨建云), Duanwei He(贺端威), Khalid Nabulsi, and Guodong (David) Zhan(詹国栋). Chin. Phys. B, 2025, 34(6): 066203.
[10] Pressure-induced superconductivity in Bi-doped BaFe2(As1-xBix)2 single crystals
Chang Su(苏畅), Wuhao Chen(陈吴昊), Wenjing Cheng(程文静), Jiabin Si(司佳斌), Qunfei Zheng(郑群飞), Jinlong Zhu(朱金龙), Lingyi Xing(邢令义), and Ying Liu(刘影). Chin. Phys. B, 2025, 34(6): 067403.
[11] Synthesis of two-dimensional diamond by phase transition from graphene at atmospheric pressure
Songyang Li(李松洋), Zhiguang Zhu(朱志光), Youzhi Zhang(张有志), Chengke Chen(陈成克), and Xiaojun Hu(胡晓君). Chin. Phys. B, 2025, 34(5): 058101.
[12] Irreversibility as a signature of non-equilibrium phase transition in large-scale human brain networks: An fMRI study
Jing Wang(王菁), Kejian Wu(吴克俭), Jiaqi Dong(董家奇), and Lianchun Yu(俞连春). Chin. Phys. B, 2025, 34(5): 058703.
[13] Pressure-driven crystal structure evolution in RbB2C4 compounds
Jinyu Liu(刘金禹), Ailing Liu(刘爱玲), Yujia Wang(王雨佳), Lili Gao(高丽丽), Xiangyi Luo(罗香怡), and Miao Zhang(张淼). Chin. Phys. B, 2025, 34(4): 046201.
[14] Stoichiometric change and solid decomposition in Ca-S compounds under high pressure
Yang Lv(吕阳), Jian-Fu Li(李建福), Zhao-Bin Zhang(张钊彬), Yong Liu(刘勇), Jia-Nan Yuan(袁嘉男), Jia-Ni Lin(林佳妮), and Xiao-Li Wang(王晓丽). Chin. Phys. B, 2025, 34(4): 046202.
[15] Phase transition extracted by principal component analysis in the disordered Moore-Read state
Na Jiang(江娜), Shuaixin Fu(付帅鑫), Zhengzhi Ma(马正直), and Lian Wang(王莲). Chin. Phys. B, 2025, 34(4): 047306.
No Suggested Reading articles found!