1 School of Medical Information Engineering, Shenyang Medical College, Shenyang 110034, China; 2 State Key Laboratory of High Pressure and Superhard Materials, Jilin University, Changchun 130012, China; 3 School of Science, Shenyang Ligong University, Shenyang 110159, China; 4 Spallation Neutron Source Science Center, Dongguan 523803, China
Abstract The structural phase transition of MnO nanorods was investigated using in situ high pressure synchrotron x-ray diffraction (XRD) and transmission electron microscopy (TEM). At pressures exceeding 10.9 GPa, a second-order structural phase transition from tetragonal to orthogonal, which was accompanied by fine-scale crystal twinning phenomena, was observed in MnO nanorods. On account of the significant contribution of surface energy, the phase transition pressure exhibited appreciable hysteresis compared with the bulk counterparts, suggesting the enhanced structural stability of nanorod morphology. These findings reveal that the size and morphology exhibit a manifest correlation with the high pressure behavior of MnO nanomaterials, providing useful insights into the intricate interplay between structure and properties.
Fund: We would like to thank Beijing Synchrotron Radiation Facility technical support groups. Project supported by China Postdoctoral Science Foundation (Grant No. 2023M742049), Guangdong Basic and Applied Basic Research Foundation (Grant No. 2023A1515110844), and the Innovative Training Program for College Students (Grant No. 20249076).
Corresponding Authors:
Zong-Lun Li
E-mail: lizl20@mails.jlu.edu.cn
Cite this article:
Xue-Ting Zhang(张雪婷), Chen-Yi Li(李晨一), Hui Tian(田辉), Xin-Yue Wang(王心悦), Zong-Lun Li(李宗伦), and Quan-Jun Li(李全军) Morphology-tuned phase transition of MnO2 nanorods under high pressure 2025 Chin. Phys. B 34 066105
[1] Aric‘o A S, Bruce P, Scrosati B, Tarascon J M and Van S W 2005 Nat. Mater. 4 366 [2] Tan C, Cao X, Wu X, He Q, Yang J, Zhang X, Chen J, Zhao W, Han S, Nam G, Sindoro M and Zhang H 2017 Chem. Rev. 117 6225 [3] Roduner E 2006 Chem. Soc. Rev. 35 583 [4] Li T, Wang S, Chen X, Chen C, Fang Y and Yang Z 2024 Chin. Phys. B 33 66401 [5] Chen J, Lv X, Li S, Dan Y, Huang Y and Cui T 2024 Chin. Phys. B 33 67104 [6] Wang S, Zhao X, Hu K, Feng B, Hou X, Zhang Y, Liu S, Shang Y, Liu Z, Yao M and Liu B 2024 Chin. Phys. B 33 98104 [7] Li Q, Cheng B, Tian B, Liu R, Liu B, Wang F, Chen Z, Zou B, Cui T and Liu B 2014 RSC Adv. 4 12873 [8] Yan X, Ren X, Zhu S, Van G D, Wang L, Zhao Y and Wang S 2021 Phys. Rev. B 103 L140103 [9] Wang L, YangW, Ding Y, Ren Y, Xiao S, Liu B, Sinogeikin S V, Meng Y, Gosztola D J, Shen G, Hemley R J, Mao W and Mao H 2010 Phys. Rev. Lett. 105 095701 [10] Das P P, Devi P S, Blom D A, Vogt T and Lee Y 2019 ACS Omega 4 10539 [11] Li Z, Liu B, Yu S, Wang J, Li Q, Zou B, Cui T, Liu Z, Chen Z and Liu J 2011 J. Phys. Chem. C 115 357 [12] Yang C, Liu Y, Sun H, Guo D, Li X, Li W, Liu B and Zhang X 2008 Nanotechnology 19 095704 [13] Yadav P, Bhaduri A and Thakur A 2023 ChemBioEng. Rev. 10 510 [14] Devaraj S and Munichandraiah N 2008 J. Phys. Chem. C 112 4406 [15] Gao X, Tian D, Shi Z, Zhang N, Sun R, Liu J, Tsai H S, Xiang X and Feng W 2024 Small 20 2405627 [16] Dou X, Chen Z, Zhang C, Li X, Qiao F, Song B, Wang S, Teng H and Lv Z 2024 Chin. Phys. B 33 114202 [17] Clendenen R and Drickamer H 1966 J. Chem. Phys. 44 4223 [18] Haines J, Léger J and Hoyau S 1995 J. Phys. Chem. Solids 56 965 [19] Curetti N, Merli M, Capella S, Benna P and Pavese A 2019 Phys. Chem. Miner. 46 987 [20] Yue B, Krug M, Sanchez V C, Merkel S and Hong F 2022 Phys. Rev. Mater. 6 053603 [21] Li Y, Wu X, Qin S and Wu Z 2006 Chin. J. High Press. Phys. 20 285 [22] Kaya L, Karatum O, Balamur R, Kaleli H N, Önal A, Vanalakar S A, Hasanreisoglu M and Nizamoglu S 2023 Adv. Sci. 10 2301854 [23] Song H, Xu L, Chen M, Cui Y, Wu C, Qiu J, Xu L, Cheng G and Hu X 2021 RSC Adv. 11 35494 [24] Gaikwad N K, Kulkarni A A, Beknalkar S A, Teli A M and Bhat T S 2024 J. Energy Storage 100 113418 [25] Toby B 2001 J. Appl. Crystallogr. 34 210 [26] Zhu S, Li L, Liu J,Wang H,Wang T, Zhang Y, Zhang L, Ruoff R S and Dong F 2018 ACS Nano 12 1033 [27] Zhan D, Zhang Q, Hu X and Peng T 2013 RSC Adv. 3 5141 [28] Wang G, Nie L and Yu S 2012 RSC Adv. 2 6216 [29] Baranov A N, Sokolov P S, Tafeenko V A, Lathe C, Zubavichus Y V, Veligzhanin A A, Chukichev M V and Solozhenko V L 2013 Chem. Mater. 25 1775 [30] Chen Z, Li G, Zheng H, Shu X, Zou J and Peng P 2017 Appl. Surf. Sci. 420 205 [31] Xiao G, Yang X, Zhang X, Wang K, Huang X, Ding Z, Ma Y, Zou G and Zou B 2015 J. Am. Chem. Soc. 137 10297 [32] Du X, An C, Chen X, Zhou Y, Zhang M, Wang S, Chen C, Zhou Y, Yang X and Yang Z 2023 Phys. Rev. B 108 014109 [33] Tian C, Huang X, Gao Y, Tian F, Liang M, Fang Y, Huang F and Cui T 2023 Phys. Rev. B 108 L180507 [34] Yue L, Xu D, Wei Z, Zhao T, Lin T, Tenne R, Zak A, Li Q and Liu B 2022 Materials 15 2838 [35] Paris E, Joseph B, Iadecola A, Marini C, Ishii H, Kudo K, Pascarelli S, Nohara M, Mizokawa T and Saini N L 2016 Phys. Rev. B 93 134109 [36] Cuartero V, Monteseguro V, Otero de la Roza A, El Idrissi M, Mathon O, Shinmei T, Irifune T and Sanson A 2020 Phys. Chem. Chem. Phys. 22 24299
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.