Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(3): 034203    DOI: 10.1088/1674-1056/acf996
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

A polarization sensitive interferometer: Delta interferometer

Chao-Qi Wei(卫超奇)1, Jian-Bin Liu(刘建彬)1,†, Yi-Fei Dong(董翼飞)1, Yu-Nong Sun(孙雨农)1, Yu Zhou(周宇)2, Huai-Bin Zheng(郑淮斌)1, Yan-Yan Liu(刘严严)3, Xiu-Sheng Yan(闫秀生)3, Fu-Li Li(李福利)2, and Zhuo Xu(徐卓)1
1 Key Laboratory of Multifunctional Materials and Structures, Ministry of Education & International Center for Dielectric Research, School of Electronic Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China;
2 MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Department of Applied Physics, Xi'an Jiaotong University, Xi'an 710049, China;
3 Science and Technology on Electro-Optical Information Security Control Laboratory, Tianjin 300308, China
Abstract  A new type of polarization sensitive interferometer is proposed, named the Delta interferometer, inspired by its geometry resembling the Greek letter Delta. The main difference between the Delta interferometer and other existing interferometers, such as Michelson, Mach-Zehnder and Young's double-slit interferometers, is that the two interfering paths are asymmetrical in the Delta interferometer. The visibility of the first-order interference pattern observed in the Delta interferometer is dependent on the polarization of the incidental light. Optical coherence theory is employed to interpret this phenomenon and single-mode continuous-wave laser light is employed to verify the theoretical predictions. The theoretical and experimental results are consistent. The Delta interferometer is a perfect tool to study the reflection of electromagnetic fields in different polarizations and may find applications in polarization-sensitive scenarios.
Keywords:  phase sensitive interferometer      Fresnel formula      first-order interference  
Received:  03 July 2023      Revised:  15 August 2023      Accepted manuscript online:  14 September 2023
PACS:  42.25.Hz (Interference)  
  43.20.Gp (Reflection, refraction, diffraction, interference, and scattering of elastic and poroelastic waves)  
Fund: Project supported by the Shanxi Key Research and Development Project (Grant No. 2019ZDLGY09-08) and Shanxi Nature and Science Basic Research Project (Grant No. 2019JLP-18).
Corresponding Authors:  Jian-Bin Liu     E-mail:  liujianbin@xjtu.edu.cn

Cite this article: 

Chao-Qi Wei(卫超奇), Jian-Bin Liu(刘建彬), Yi-Fei Dong(董翼飞), Yu-Nong Sun(孙雨农), Yu Zhou(周宇), Huai-Bin Zheng(郑淮斌), Yan-Yan Liu(刘严严), Xiu-Sheng Yan(闫秀生), Fu-Li Li(李福利), and Zhuo Xu(徐卓) A polarization sensitive interferometer: Delta interferometer 2024 Chin. Phys. B 33 034203

[1] Newton I 1712 Opticks: Or a Treatise of the Reflexions, Refractions, Inflectxions and Colours of light (London)
[2] Young T 1804 Phil. Trans. R. Soc. Lond. 94 1
[3] Grangier P, Roger G and Aspect A 1986 Europhysics Letters 1 173
[4] Michelson A A and Morley E W 1887 Am. J. Phys. 34 306
[5] Einstein A 1905 Annal. Phys. 322 891
[6] Hariharan P 2003 Optical Interferometry (2nd ed.) (CA, Academic Press)
[7] Jackson J D 1999 Classical Electrodynamics (3rd ed.) Chap. 7.3 (MA, John Wiley & Sons, Inc.)
[8] Yang R G and Liu Y L 2019 Electric Field and Electrical Magnetic Wave (3rd ed.) Chap. 8.8 (Beijing, Advanced Education Press)
[9] Hecht E (2002) Optics (4th ed.) section 9.3 (CA, Addison Wesley)
[10] Wolfe R N and Eisen F C 1948 J. Opt. Soc. A 38 706
[11] Kantor W 1972 IL Nuovo Cimento 9 69
[12] Allman B E, Klein A G, Nugent K A and Opat G I 1993 Euro. J. Phys. 14 272
[13] Carey W M 2009 Acoust. Today 5 14
[14] Kumar R 2010 J. Opt. 39 90
[15] Wathuthanthri I, Mao W D and Choi C H 2011 Opt. Lett. 36 1593
[16] Zhou H Y and Zeng L J 2016 Opt. Commun. 360 68
[17] Takasaki H and Yoshino Y 1969 Appl. Opt. 8 2344
[18] Françon M and Mallic S 1971 Polarization interferometers: applications in microscopy and macroscopy (Wiley-Interscience)
[19] Ciurczak E W 2005 Spectroscopy 20 68
[20] Escorihuela J, González-Martínez M Á, López-Paz J L, et al. 2015 Chem. Rev. 115 265
[21] Stoyanov H Y 2000 Opt & Laser Tech. 32 147
[22] Grangier P, Slusher R E, Yurke E and LaPorta A 1987 Phys. Rev. Lett. 59 2153
[23] Born M and Wolf E 1999 Principle of Optics (7th ed.) (Cambridge, Cambridge University Press)
[24] Luo S, Zhou Y, Zheng H B et al. 2021 Opt. Express 29 30094
[25] Bass M and Mahajan V N (ed.) 2010 Handbook of Optics (Vol. I): Geometrical and Physical Optics, Polarizd light, Components and Instruments (3rd ed.) Chap. 12.3 (NY, The McGraw Hill Companies, Inc.)
[1] Effective transmittance of Fabry—Perot cavity under non-parallel beam incidence
Yin-Sheng Lv(吕寅生), Pin-Hua Xie(谢品华), Jin Xu(徐晋), You-Tao Li(李友涛), and Hua-Rong Zhang(张华荣). Chin. Phys. B, 2024, 33(1): 014210.
[2] Young's double slit interference with vortex source
Qilin Duan(段琦琳), Pengfei Zhao(赵鹏飞), Yuhang Yin(殷玉杭), and Huanyang Chen(陈焕阳). Chin. Phys. B, 2024, 33(1): 014202.
[3] Active control of surface plasmon polaritons with phase change materials
Yuan-Zhen Qi(漆元臻), Qiao Jiang(蒋瞧), Hong Xiang(向红), and De-Zhuan Han(韩德专). Chin. Phys. B, 2023, 32(10): 104202.
[4] Bound states in the continuum in metal—dielectric photonic crystal with a birefringent defect
Hongzhen Tang(唐宏珍), Peng Hu(胡鹏), Da-Jian Cui(崔大健), Hong Xiang(向红), and Dezhuan Han(韩德专). Chin. Phys. B, 2022, 31(10): 104209.
[5] High-sensitivity methane monitoring based on quasi-fundamental mode matched continuous-wave cavity ring-down spectroscopy
Zhe Li(李哲), Shuang Yang(杨爽), Zhirong Zhang(张志荣), Hua Xia(夏滑), Tao Pang(庞涛),Bian Wu(吴边), Pengshuai Sun(孙鹏帅), Huadong Wang(王华东), and Runqing Yu(余润磬). Chin. Phys. B, 2022, 31(9): 094207.
[6] Design of three-dimensional imaging lidar optical system for large field of view scanning
Qing-Yan Li(李青岩), Yu Zhang(张雨), Shi-Yu Yan(闫诗雨),Bin Zhang(张斌), and Chun-Hui Wang(王春晖). Chin. Phys. B, 2022, 31(7): 074201.
[7] A 32-channel 100 GHz wavelength division multiplexer by interleaving two silicon arrayed waveguide gratings
Changjian Xie(解长健), Xihua Zou (邹喜华), Fang Zou(邹放), Lianshan Yan(闫连山), Wei Pan(潘炜), and Yong Zhang(张永). Chin. Phys. B, 2021, 30(12): 120703.
[8] Asymmetric coherent rainbows induced by liquid convection
Tingting Shi(施婷婷), Xuan Qian(钱轩), Tianjiao Sun(孙天娇), Li Cheng(程力), Runjiang Dou(窦润江), Liyuan Liu(刘力源), and Yang Ji(姬扬). Chin. Phys. B, 2021, 30(12): 124208.
[9] Phase-shift interferometry measured transmission matrix of turbid medium: Three-step phase-shifting interference better than four-step one
Xi-Cheng Zhang(张熙程), Zuo-Gang Yang(杨佐刚), Long-Jie Fang(方龙杰), Jing-Lei Du(杜惊雷), Zhi-You Zhang(张志友), and Fu-Hua Gao(高福华). Chin. Phys. B, 2021, 30(10): 104202.
[10] Broad-band phase retrieval method for transient radial shearing interference using chirp Z transform technique
Fang Xue(薛芳), Ya-Xuan Duan(段亚轩), Xiao-Yi Chen(陈晓义), Ming Li(李铭), Suo-Chao Yuan(袁索超), and Zheng-Shang Da(达争尚). Chin. Phys. B, 2021, 30(8): 084209.
[11] Bound states in the continuum on perfect conducting reflection gratings
Jianfeng Huang(黄剑峰), Qianju Song(宋前举), Peng Hu(胡鹏), Hong Xiang(向红), and Dezhuan Han(韩德专). Chin. Phys. B, 2021, 30(8): 084211.
[12] Impact of the spatial coherence on self-interference digital holography
Xingbing Chao(潮兴兵), Yuan Gao(高源), Jianping Ding(丁剑平), and Hui-Tian Wang(王慧田). Chin. Phys. B, 2021, 30(8): 084212.
[13] Stable quantum interference enabled by coexisting detuned and resonant STIRAPs
Dan Liu(刘丹), Yichun Gao(高益淳), Jianqin Xu(许建琴), and Jing Qian(钱静). Chin. Phys. B, 2021, 30(5): 053701.
[14] Controlling the light wavefront through a scattering medium based on direct digital frequency synthesis technology
Yuan Yuan(袁园), Min-Yuan Sun(孙敏远), Yong Bi(毕勇), Wei-Nan Gao(高伟男), Shuo Zhang(张硕), and Wen-Ping Zhang(张文平). Chin. Phys. B, 2021, 30(1): 014209.
[15] Dependence of interferogram phase on incident wavenumber and phase stability of Doppler asymmetric spatial heterodyne spectroscopy
Ya-Fei Zhang(张亚飞), Yu-Tao Feng(冯玉涛)†, Di Fu(傅頔), Peng-Chong Wang(王鹏冲), Jian Sun(孙剑), and Qing-Lan Bai(白清兰). Chin. Phys. B, 2020, 29(10): 104204.
No Suggested Reading articles found!