Quantum anomalous Hall effect in twisted bilayer graphene
Wen-Xiao Wang(王文晓)1,5, Yi-Wen Liu(刘亦文)2, and Lin He(何林)3,4,†
1 Hebei Advanced Thin Films Laboratory, Hebei Normal University, Shijiazhuang 050024, China; 2 Department of Condensed Matter Physics, Weizmann Institute of Science, Rehovot 7610001, Israel; 3 Center for Advanced Quantum Studies, Department of Physics, Beijing Normal University, Beijing 100875, China; 4 Key Laboratory of Multiscale Spin Physics, Ministry of Education, Beijing 100875, China; 5 Postdoctoral Research Station at Hebei Normal University, Shijiazhuang 050024, China
Abstract Recent advancements in two-dimensional van der Waals moiré materials have unveiled the captivating landscape of moiré physics. In twisted bilayer graphene (TBG) at `magic angles', strong electronic correlations give rise to a diverse array of exotic physical phenomena, including correlated insulating states, superconductivity, magnetism, topological phases, and the quantum anomalous Hall (QAH) effect. Notably, the QAH effect demonstrates substantial promise for applications in electronic and quantum computing devices with low power consumption. This article focuses on the latest developments surrounding the QAH effect in magic-angle TBG. It provides a comprehensive analysis of magnetism and topology - two crucial factors in engineering the QAH effect within magic-angle TBG. Additionally, it offers a detailed overview of the experimental realization of the QAH effect in moiré superlattices. Furthermore, this review highlights the underlying mechanisms driving these exotic phases in moiré materials, contributing to a deeper understanding of strongly interacting quantum systems and facilitating the manipulation of new material properties to achieve novel quantum states.
Fund: This work was supported by the Science Research Project of Hebei Education Department (Grant No. BJK2024168), the National Natural Science Foundation of China (Grant No. 11904076), the Natural Science Foundation of Hebei (Grant No. A2019205313), and Science Foundation of Hebei Normal University (Grant No. L2024J02).
Corresponding Authors:
Lin He
E-mail: helin@bnu.edu.cn
Cite this article:
Wen-Xiao Wang(王文晓), Yi-Wen Liu(刘亦文), and Lin He(何林) Quantum anomalous Hall effect in twisted bilayer graphene 2025 Chin. Phys. B 34 047301
[1] Cao Y, Fatemi V, Demir A, Fang S, Tomarken S L, Luo J Y, Sanchez-Yamagishi J D, Watanabe K, Taniguchi T, Kaxiras E, Ashoori R C and Jarillo-Herrero P 2018 Nature 556 80 [2] Cao Y, Fatemi V, Fang S, Watanabe K, Taniguchi T, Kaxiras E and Jarillo-Herrero P 2018 Nature 556 43 [3] Lu X, Stepanov P, YangW, Xie M, AamirMA, Das I, Urgell C,Watanabe K, Taniguchi T, Zhang G, Bachtold A, MacDonald A H and Efetov D K 2019 Nature 574 653 [4] Nuckolls K P, Oh M, Wong D, Lian B, Watanabe K, Taniguchi T, Bernevig B A and Yazdani A 2020 Nature 588 610 [5] Sharpe A L, Fox E J, Barnard A W, Finney J, Watanabe K, Taniguchi T, Kastner M A and Goldhaber-Gordon D 2019 Science 365 605 [6] Chang C Z, Zhang J, Feng X, Shen J, Zhang Z, Guo M, Li K, Ou Y, Wei P, Wang L L, Ji Z Q, Feng Y, Ji S, Chen X, Jia J F, Dai X, Fang Z, Zhang S C, He K, Wang Y, Lu L, Ma X C, Xue Q K 2013 Science 340 167 [7] Deng Y, Yu Y, Shi M Z, Guo Z, Xu Z, Wang J, Chen X H and Zhang Y 2020 Science 367 895 [8] Wu X C, Li S Z, Si J S, Huang B and Zhang W B 2024 Chin. Phys. Lett. 41 057303 [9] Cui Q, Liang J, Zhu Y, Yao X and Yang H 2023 Chin. Phys. Lett. 40 037502 [10] He K, Wang Y and Xue Q K 2014 Natl. Sci. Rev. 1 38 [11] Grauer S, Schreyeck S, Winnerlein M, Brunner K, Gould C and Molenkamp L W 2015 Phys. Rev. B 92 201304 [12] Chang C Z, ZhaoW, Kim D Y, Zhang H, Assaf B A, Heiman D, Zhang S C, Liu C, Chan M H W and Moodera J S 2015 Nat. Mater. 14 473 [13] Checkelsky J G, Yoshimi R, Tsukazaki A, Takahashi K S, Kozuka Y, Falson J, Kawasaki M and Tokura Y 2014 Nat. Phys. 10 731 [14] Ou Y, Liu C, Jiang G, Feng Y, Zhao D, Wu W, Wang X X, Li W, Song C, Wang L L, Wang W, Wu W, Wang Y, He K, Ma X C and Xue Q K 2018 Adv. Mater. 30 1703062 [15] Mogi M, Yoshimi R, Tsukazaki A, Yasuda K, Kozuka Y, Takahashi K S, Kawasaki M and Tokura Y 2015 Appl. Phys. Lett. 107 182401 [16] Otrokov M M, Menshchikova T V, Vergniory M G, Rusinov I P, Vyazovskaya A Y, Koroteev Y M, Bihlmayer G, Ernst A, Echenique P M, Arnau A and Chulkov E V 2017 2D Mater. 4 025082 [17] Li Q, Trang C X, Wu W, Hwang J, Cortie D, Medhekar N, Mo S K, Yang S A and Edmonds M T 2022 Adv. Mater. 34 2107520 [18] Qi S, Gao R, Chang M, Han Y and Qiao Z 2020 Phys. Rev. B 101 014423 [19] Sun K, Gu Z, Katsura H and Das Sarma S 2011 Phys. Rev. Lett. 106 236803 [20] Zhang Y H, Mao D, Cao Y, Jarillo-Herrero P and Senthil T 2019 Phys. Rev. B 99 075127 [21] Zhang Y, Tan Y W, Stormer H L and Kim P 2005 Nature 438 201 [22] Bolotin K I, Ghahari F, Shulman M D, Stormer H L and Kim P 2009 Nature 462 196 [23] Kane C L and Mele E J 2005 Phys. Rev. Lett. 95 226801 [24] Novoselov K S, McCann E, Morozov S V, Fal’ko V I, Katsnelson M I, Zeitler U, Jiang D, Schedin F and Geim A K 2006 Nat. Phys. 2 177 [25] Dean C R, Young A F, Cadden-Zimansky P,Wang L, Ren H,Watanabe K, Taniguchi T, Kim P, Hone J and Shepard K L 2011 Nat. Phys. 7 693 [26] Li G, Luican A, Lopes Dos Santos J M B, Castro Neto A H, Reina A, Kong J and Andrei E Y 2010 Nat. Phys. 6 109 [27] Tan L Z, Park C H and Louie S G 2011 Nano Lett. 11 2596 [28] Yin L J, Qiao J B, Zuo W J, Li W T and He L 2015 Phys. Rev. B 92 081406 [29] Li X F, Sun R X, Wang S Y, Li X, Liu Z B and Tian J G 2022 Chin. Phys. Lett. 39 037301 [30] Zhao Y X, Zhou X F, Zhang Y and He L 2021 Phys. Rev. Lett. 127 266801 [31] Brihuega I, Mallet P, González-Herrero H, Trambly De Laissardière G, Ugeda M M, Magaud L, Gómez-Rodríguez J M, Ynduráin F and Veuillen J Y 2012 Phys. Rev. Lett. 109 196802 [32] Yan W, Liu M, Dou R F, Meng L, Feng L, Chu Z D, Zhang Y, Liu Z, Nie J C and He L 2012 Phys. Rev. Lett. 109 126801 [33] Bistritzer R and MacDonald A H 2011 Proc. Natl. Acad. Sci. USA 108 12233 [34] Guinea F and Walet N R 2018 Proc. Natl. Acad. Sci. USA 115 13174 [35] Isobe H, Yuan N F Q and Fu L 2018 Phys. Rev. X 8 041041 [36] Kennes D M, Lischner J and Karrasch C 2018 Phys. Rev. B 98 241407 [37] Sherkunov Y and Betouras J J 2018 Phys. Rev. B 98 205151 [38] Da Liao Y, Meng Z Y and Xu X Y 2019 Phys. Rev. Lett. 123 157601 [39] Cea T and Guinea F 2020 Phys. Rev. B 102 045107 [40] Kang J and Vafek O 2020 Phys. Rev. B 102 035161 [41] Ren Y N, Zhang Y, Liu Y W and He L 2020 Chin. Phys. B 29 117303 [42] Kazmierczak N P, Van Winkle M, Ophus C, Bustillo K C, Carr S, Brown H G, Ciston J, Taniguchi T,Watanabe K and Bediako D K 2021 Nat. Mater. 20 956 [43] Huder L, Artaud A, Le Quang T, De Laissardière G T, Jansen A G M, Lapertot G, Chapelier C and Renard V T 2018 Phys. Rev. Lett. 120 156405 [44] Yoo H, Engelke R, Carr S, Fang S, Zhang K, Cazeaux P, Sung S H, Hoyden R, Tsen A W, Taniguchi T, Watanabe K, Yi G C, Kim M, Luskin M, Tadmor E B, Kaxiras E and Kim P 2019 Nat. Mater. 18 448 [45] Lucignano P, Alfè D, Cataudella V, Ninno D and Cantele G 2019 Phys. Rev. B 99 195419 [46] Carr S, Fang S, Zhu Z and Kaxiras E 2019 Phys. Rev. Res. 1 013001 [47] Zhou X F, Liu Y W, Hao C Y, Yan C, Zheng Q, Ren Y N, Zhao Y X, Watanabe K, Taniguchi T and He L 2023 Phys. Rev. B 107 125410 [48] Gargiulo F and Yazyev O V 2018 2D Mater. 5 015019 [49] Angeli M, Mandelli D, Valli A, Amaricci A, Capone M, Tosatti E and Fabrizio M 2018 Phys. Rev. B 98 235137 [50] Haldane F D M 1988 Phys. Rev. Lett. 61 2015 [51] Qiao Z, Yang S A, Feng W, Tse W K, Ding J, Yao Y, Wang J and Niu Q 2010 Phys. Rev. B 82 161414 [52] Qiao Z, Ren W, Chen H, Bellaiche L, Zhang Z, MacDonald A H and Niu Q 2014 Phys. Rev. Lett. 112 116404 [53] Tse W K, Qiao Z, Yao Y, MacDonald A H and Niu Q 2011 Phys. Rev. B 83 155447 [54] Liu J, Ma Z, Gao J and Dai X 2019 Phys. Rev. X 9 031021 [55] Zhang Y H, Mao D, Cao Y, Jarillo-Herrero P and Senthil T 2019 Phys. Rev. B 99 075127 [56] Song J C W, Samutpraphoot P and Levitov L S 2015 Proc. Natl. Acad. Sci. USA 112 10879 [57] Repellin C and Senthil T 2020 Phys. Rev. Res. 2 023238 [58] Ochi M, Koshino M and Kuroki K 2018 Phys. Rev. B 98 081102 [59] Dodaro J F, Kivelson S A, Schattner Y, Sun X Q and Wang C 2018 Phys. Rev. B 98 075154 [60] Thomson A, Chatterjee S, Sachdev S and Scheurer M S 2018 Phys. Rev. B 98 075109 [61] Venderbos J W F and Fernandes R M 2018 Phys. Rev. B 98 245103 [62] Seo K, Kotov V N and Uchoa B 2019 Phys. Rev. Lett. 122 246402 [63] Kang J and Vafek O 2019 Phys. Rev. Lett. 122 246401 [64] Xie M and MacDonald A H 2020 Phys. Rev. Lett. 124 097601 [65] Liu M, Zhang Y, Chen Y, Gao Y, Gao T, Ma D, Ji Q, Zhang Y, Li C and Liu Z 2012 ACS Nano 6 10581 [66] Hass J, Varchon F, Millán-Otoya J E, Sprinkle M, Sharma N, De Heer W A, Berger C, First P N, Magaud L and Conrad E H 2008 Phys. Rev. Lett. 100 125504 [67] Li S, Wang Z, Xue Y, Wang Y, Zhang S, Liu J, Zhu Z, Watanabe K, Taniguchi T, Gao H, Jiang Y and Mao J 2022 Nat. Commun. 13 4225 [68] Guo H, Hu Z, Liu Z and Tian J 2021 Adv. Funct. Mater. 31 2007810 [69] Purdie D G, Pugno N M, Taniguchi T, Watanabe K, Ferrari A C and Lombardo A 2018 Nat. Commun. 9 5387 [70] Kim K, Yankowitz M, Fallahazad B, Kang S, Movva H C P, Huang S, Larentis S, Corbet C M, Taniguchi T, Watanabe K, Banerjee S K, LeRoy B J and Tutuc E 2016 Nano Lett. 16 1989 [71] Bultinck N, Chatterjee S and Zaletel M P 2020 Phys. Rev. Lett. 124 166601 [72] Repellin C and Senthil T 2020 Phys. Rev. Res. 2 023238 [73] Zhang Y H, Mao D and Senthil T 2019 Phys. Rev. Res. 1 033126 [74] Stepanov P, Xie M, Taniguchi T, Watanabe K, Lu X, MacDonald A H, Bernevig B A and Efetov D K 2021 Phys. Rev. Lett. 127 197701 [75] Lin J X, Zhang Y H, Morissette E,Wang Z, Liu S, Rhodes D,Watanabe K, Taniguchi T, Hone J and Li J I A 2022 Science 375 437 [76] Tseng C C, Ma X, Liu Z, Watanabe K, Taniguchi T, Chu J H and Yankowitz M 2022 Nat. Phys. 18 1038 [77] Ledwith P J, Tarnopolsky G, Khalaf E and Vishwanath A 2020 Phys. Rev. Res. 2 023237 [78] Serlin M, Tschirhart C L, Polshyn H, Zhang Y, Zhu J, Watanabe K, Taniguchi T, Balents L and Young A F 2020 Science 367 900 [79] Cai J, Anderson E, Wang C, Zhang X, Liu X, Holtzmann W, Zhang Y, Fan F, Taniguchi T, Watanabe K, Ran Y, Cao T, Fu L, Xiao D, Yao W and Xu X 2023 Nature 622 63 [80] Xu F, Sun Z, Jia T, Liu C, Xu C, Li C, Gu Y,Watanabe K, Taniguchi T, Tong B, Jia J, Shi Z, Jiang S, Zhang Y, Liu X and Li T 2023 Phys. Rev. X 13 031037 [81] Lu Z, Han T, Yao Y, Reddy A P, Yang J, Seo J, Watanabe K, Taniguchi T, Fu L and Ju L 2024 Nature 626 759 [82] Li T, Jiang S, Shen B, Zhang Y, Li L, Tao Z, Devakul T, Watanabe K, Taniguchi T, Fu L, Shan J and Mak K F 2021 Nature 600 641 [83] Xie Y, Pierce A T, Park J M, Parker D E, Khalaf E, Ledwith P, Cao Y, Lee S H, Chen S, Forrester P R, Watanabe K, Taniguchi T, Vishwanath A, Jarillo-Herrero P and Yacoby A 2021 Nature 600 439 [84] Spanton E M, Zibrov A A, Zhou H, Taniguchi T, Watanabe K, Zaletel M P and Young A F 2018 Science 360 62 [85] Park H, Cai J, Anderson E, Zhang Y, Zhu J, Liu X,Wang C, Holtzmann W, Hu C, Liu Z, Taniguchi T, Watanabe K, Chu J H, Cao T, Fu L, Yao W, Chang C Z, Cobden D, Xiao D, Xu X 2023 Nature 622 74 [86] Xie J, Huo Z, Lu X, Feng Z, Zhang Z, Wang W, Yang Q, Watanabe K, Taniguchi T, Liu K, Song Z, Xie X C, Liu J and Lu X 2024 arXiv: 2405.16944v1 [87] Lu Z, Han T, Yao Y, Yang J, Seo J, Shi L, Ye S,Watanabe K, Taniguchi T and Ju L 2024 arXiv: 2408.10203 [88] He M, Zhang Y H, Li Y, Fei Z, Watanabe K, Taniguchi T, Xu X and Yankowitz M 2021 Nat. Commun. 12 4727 [89] Polshyn H, Zhu J, Kumar M A, Zhang Y, Yang F, Tschirhart C L, Serlin M,Watanabe K, Taniguchi T, MacDonald A H and Young A F 2020 Nature 588 66 [90] Chen S, He M, Zhang Y H, Hsieh V, Fei Z, Watanabe K, Taniguchi T, Cobden D H, Xu X, Dean C R and Yankowitz M 2021 Nat. Phys. 17 374 [91] Chen G, Sharpe A L, Fox E J, Zhang Y H, Wang S, Jiang L, Lyu B, Li H, Watanabe K, Taniguchi T, Shi Z, Senthil T, Goldhaber-Gordon D, Zhang Y and Wang F 2020 Nature 579 56 [92] Chen H, Arora A, Song J C W and Loh K P 2023 Nat. Commun. 14 7925 [93] Choi Y, Choi Y, Valentini M, Patterson C L, Holleis L F W, Sheekey O I, Stoyanov H, Cheng X, Taniguchi T, Watanabe K and Young A F 2024 arXiv: 2408.12584 [94] Aronson S H, Han T, Lu Z, Yao Y, Watanabe K, Taniguchi T, Ju L and Ashoori R C 2024 arXiv: 2408.11220 [95] Han T, Lu Z, Yao Y, Yang J, Seo J, Yoon C, Watanabe K, Taniguchi T, Fu L, Zhang F and Ju L 2024 Science 384 647 [96] Zeng Y, Xia Z, Kang K, Zhu J, Knüppel P, Vaswani C, Watanabe K, Taniguchi T, Mak K F and Shan J 2023 Nature 622 69 [97] Foutty B A, Kometter C R, Devakul T, Reddy A P, Watanabe K, Taniguchi T, Fu L and Feldman B E 2024 Science 384 343 [98] Das Sarma S and Xie M 2024 Phys. Rev. B 109 L121104 [99] Qi X L, Hughes T L and Zhang S C 2010 Phys. Rev. B 82 184516
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.