Special Issue:
TOPICAL REVIEW — Topological electronic states
|
TOPICAL REVIEW—Topological electronic states |
Prev
Next
|
|
|
Quantum anomalous Hall effect in real materials |
Jiayong Zhang(张加永)1, Bao Zhao(赵宝)1, Tong Zhou(周通)1, Zhongqin Yang(杨中芹)1,2 |
1 State Key Laboratory of Surface Physics and Key Laboratory for Computational Physical Sciences(MOE) & Department of Physics, Fudan University, Shanghai 200433, China;
2 Collaborative Innovation Center of Advanced Microstructures, Fudan University, Shanghai 200433, China |
|
|
Abstract Under a strong magnetic field, the quantum Hall (QH) effect can be observed in two-dimensional electronic gas systems. If the quantized Hall conductivity is acquired in a system without the need of an external magnetic field, then it will give rise to a new quantum state, the quantum anomalous Hall (QAH) state. The QAH state is a novel quantum state that is insulating in the bulk but exhibits unique conducting edge states topologically protected from backscattering and holds great potential for applications in low-power-consumption electronics. The realization of the QAH effect in real materials is of great significance. In this paper, we systematically review the theoretical proposals that have been brought forward to realize the QAH effect in various real material systems or structures, including magnetically doped topological insulators, graphene-based systems, silicene-based systems, two-dimensional organometallic frameworks, quantum wells, and functionalized Sb(111) monolayers, etc. Our paper can help our readers to quickly grasp the recent developments in this field.
|
Received: 25 February 2016
Revised: 08 May 2016
Accepted manuscript online:
|
PACS:
|
73.43.-f
|
(Quantum Hall effects)
|
|
71.70.Ej
|
(Spin-orbit coupling, Zeeman and Stark splitting, Jahn-Teller effect)
|
|
73.22.-f
|
(Electronic structure of nanoscale materials and related systems)
|
|
72.25.Dc
|
(Spin polarized transport in semiconductors)
|
|
Fund: Project supported by the National Basic Research Program of China (Grant No. 2011CB921803), the National Natural Science Foundation of China (Grant No. 11574051), the Natural Science Foundation of Shanghai, China (Grant No. 14ZR1403400), and Fudan High-end Computing Center, China. |
Corresponding Authors:
Zhongqin Yang
E-mail: zyang@fudan.edu.cn
|
Cite this article:
Jiayong Zhang(张加永), Bao Zhao(赵宝), Tong Zhou(周通), Zhongqin Yang(杨中芹) Quantum anomalous Hall effect in real materials 2016 Chin. Phys. B 25 117308
|
[1] |
Hasan M Z and Kane C L 2010 Rev. Mod. Phys. 82 3045
|
[2] |
Qi X L and Zhang S C 2011 Rev. Mod. Phys. 83 1057
|
[3] |
He K, Wang Y Y and Xue Q K 2014 Natl. Sci. Rev. 1 138
|
[4] |
He K, Ma X C, Chen X, Lu L, Wang Y Y and Xue Q K 2013 Chin. Phys. B 22 067305
|
[5] |
Gao C L, Qian D, Liu C H, Jia J F and Liu F 2013 Chin. Phys. B 22 067304
|
[6] |
Liu Z, Liu F and Wu Y S 2014 Chin. Phys. B 23 077308
|
[7] |
Klitzing K V, Dorda G and Pepper M 1980 Phys. Rev. Lett. 45 494
|
[8] |
Haldane F D M 1988 Phys. Rev. Lett. 61 2015
|
[9] |
Liu C X, Qi X L, Dai Xi, Fang Z and Zhang S C 2008 Phys. Rev. Lett. 101 146802
|
[10] |
Zhang H J, Xu Y, Wang J, Chang K and Zhang S C 2014 Phys. Rev. Lett. 112 216803
|
[11] |
Yu R, Zhang W, Zhang H J, Zhang S C, Dai X and Fang Z 2010 Science 329 61
|
[12] |
Qiao Z H, Yang S A, Feng W X, Tse W K, Ding J, Yao Y G, Wang J and Niu Q 2010 Phys. Rev. B 82 161414(R)
|
[13] |
Qiao Z H, Jiang H, Li Z, Yao Y G and Niu Q 2012 Phys. Rev. B 85 115439
|
[14] |
Ding J, Qiao Z H, Feng W X, Yao Y G and Niu Q 2011 Phys. Rev. B 84 195444
|
[15] |
Zhang H B, Lazo C, Blügel S, Heinze S and Mokrousov Y 2012 Phys. Rev. Lett. 108 056802
|
[16] |
Qiao Z H, Ren W, Chen H, Bellaiche L, Zhang Z Y, MacDonald A H and Niu Q 2014 Phys. Rev. Lett. 112 116404
|
[17] |
Zhang J Y, Zhao B, Yao Y G and Yang Z Q 2015 Sci. Rep. 5 10629
|
[18] |
Zhang J Y, Zhao B, Yao Y G and Yang Z Q 2015 Phys. Rev. B 92 165418
|
[19] |
Ezawa M 2012 Phys. Rev. Lett. 109 055502
|
[20] |
Zhang J Y, Zhao B and Yang Z Q 2013 Phys. Rev. B 88 165422
|
[21] |
Zhang X L, Liu L F and Liu W M 2013 Sci. Rep. 3 2908
|
[22] |
Wang Z F, Liu Z and Liu F 2013 Phys. Rev. Lett. 110 196801
|
[23] |
Garrity K F and Vanderbilt D 2013 Phys. Rev. Lett. 110 116802
|
[24] |
Wu S C, Shan G C and Yan B H 2014 Phys. Rev. Lett. 113 256401
|
[25] |
Wang Y L, Wang Z J, Fang Z and Dai X 2015 Phys. Rev. B 91 125139
|
[26] |
Zhang H J, Wang J, Xu G, Xu Y and Zhang S C 2014 Phys. Rev. Lett. 112 096804
|
[27] |
Garrity K F and Vanderbilt D 2014 Phys. Rev. B 90 121103(R)
|
[28] |
Zhang H B, Huang H Q, Haule K and Vanderbilt D 2014 Phys. Rev. B 90 165143
|
[29] |
Dolui K, Ray S and Das T 2015 Phys. Rev. B 92 205133
|
[30] |
Xu G, Weng H M, Wang Z J, Dai X and Fang Z 2011 Phys. Rev. Lett. 107 186806
|
[31] |
Cook A M and Paramekanti A 2014 Phys. Rev. Lett. 113 077203
|
[32] |
Wang F and Ran Y 2011 Phys. Rev. B 84 241103(R)
|
[33] |
Yang K Y, Zhu W G, Xiao Di, Okamoto S, Wang Z and Ran Y 2011 Phys. Rev. B 84 201104(R)
|
[34] |
Fang C, Gilbert M J and Bernevig B A 2014 Phy. Rev. Lett. 112 046801
|
[35] |
Chang C Z, Zhang J S, Feng X, Shen J, Zhang Z C, Guo M H, Li K, Ou Y B, Wei P, Wang L L, Ji Z Q, Feng Y, Ji S H, Chen X, Jia J F, Dai X, Fang Z, Zhang S C, He K, Wang Y Y, Lu L, Ma X C and Xue Q K 2013 Science 340 167
|
[36] |
Checkelsky J G, Yoshimi R, Tsukazaki A, Takahashi K S, Kozuka Y, Falson J, Kawasaki M and Tokura Y 2014 Nat. Phys. 10 731
|
[37] |
Kou X F, Guo S T, Fan Y B, Pan L, Lang M R, Jiang Y, Shao Q M, Nie T X, Murata K C, Tang J S, Wang Y, He L, Lee T K, LeeWL andWang K L 2014 Phys. Rev. Lett. 113 137201
|
[38] |
Chang C Z, Zhao W W, Kim D Y, Zhang H J, Assaf B A, Heiman D, Zhang S C, Liu C X, Chan M H W and Moodera J S 2015 Nat. Mater. 14 473
|
[39] |
Bernevig B A, Hughes T L and Zhang S C 2006 Science 314 1757
|
[40] |
König M, Wiedmann S, Brüne C, Roth A, Buhmann H, Molenkamp L W, Qi X L and Zhang S C 2007 Science 318 766
|
[41] |
Zhang H J, Liu C X, Qi X L, Dai X, Fang Z and Zhang S C 2009 Nat. Phys. 5 438
|
[42] |
Thouless D J, Kohmoto M, Nightingale M P and den Nijs M 1982 Phys. Rev. Lett. 49 405
|
[43] |
Chang M C and Niu Q 1996 Phys. Rev. B 53 7010
|
[44] |
Yao Y G, Kleinman L, MacDonald A H, Sinova J, Jungwirth T, Wang D S, Wang E and Niu Q 2004 Phys. Rev. Lett. 92 037204
|
[45] |
Yao Y G, Ye F, Qi X L, Zhang S C and Fang Z 2007 Phys. Rev. B 75 041401(R)
|
[46] |
Gmitra M, Konschuh S, Ertler C, Ambrosch-Draxl C and Fabian J 2009 Phys. Rev. B 80 235431
|
[47] |
Ma D W, Li Z Y and Yang Z Q 2012 Carbon 50 297
|
[48] |
Eelbo T, Waśmiowska M, Thakur P, Gyamfi M, Sachs B, Wehling T O, Forti S, Starke U, Tieg C, Lichtenstein A I and Wiesendanger R 2013 Phys. Rev. Lett. 110 136804
|
[49] |
Chen H, Niu Q, Zhang Z Y and MacDonald A H 2013 Phys. Rev. B 87 144410
|
[50] |
Luo W D and Qi X L 2013 Phys. Rev. B 87 085431
|
[51] |
Geim A K and Grigorieva I V 2013 Nature 499 419
|
[52] |
Avsar A, Tan J Y, Taychatanapat T, Balakrishnan J, Koon G K W, Yeo Y, Lahiri J, Carvalho A, Rodin A S, O'Farrell E C T, Eda G, Castro Neto A H and Özyilmaz B 2014 Nat. Commun. 5 4875
|
[53] |
Carteaux V, Brunet D, Ouvrard G and André G 1995 J. Phys.:Condens. Matter 7 69
|
[54] |
Alegria L D, Ji H, Yao N, Clarke J J, Cava R J and Petta J R 2014 Appl. Phys. Lett. 105 053512
|
[55] |
Ji H, Stokes R A, Alegria L D, Blomberg E C, Tanatar M A, Reijnders A, Schoop L M, Liang T, Prozorov R, Burch K S, Ong N P, Petta J R and Cava R J 2013 J. Appl. Phys. 114 114907
|
[56] |
Lalmi B, Oughaddou H, Enriquez H, Kara A, Vizzini S, Ealet B and Aufray B 2010 Appl. Phys. Lett. 97 223109
|
[57] |
Vogt P, Padova P D, Quaresima C, Avila J, Frantzeskakis E, Asensio M C, Resta A, Ealet B and Lay G L 2012 Phys. Rev. Lett. 108 155501
|
[58] |
Liu C C, Feng W X and Yao Y G 2011 Phys. Rev. Lett. 107 076802
|
[59] |
Liang Q F, Yu R, Zhou J and Hu X 2016 Phys. Rev. B 93 035135
|
[60] |
Xiao Di, Yao W and Niu Q 2007 Phys. Rev. Lett. 99 236809
|
[61] |
Pan H, Li Z S, Liu C C, Zhu G B, Qiao Z H and Yao Y G 2014 Phys. Rev. Lett. 112 106802
|
[62] |
Liu C C, Zhou J J and Yao Y G 2015 Phys. Rev. B 91 165430
|
[63] |
Ezawa M 2013 Phys. Rev. B 87 155415
|
[64] |
Zhou T, Zhang J Y, Zhao B, Zhang H S and Yang Z Q 2015 Nano Lett. 15 5149
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|