Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(4): 047105    DOI: 10.1088/1674-1056/adbacc
SPECIAL TOPIC — Superconductivity in nickel oxides Prev   Next  

Electronic structure and disorder effect of La3Ni2O7 superconductor

Yuxin Wang(王郁欣)1,2, Yi Zhang(张燚)3,4,†, and Kun Jiang(蒋坤)1,2,‡
1 Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
2 School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China;
3 Department of Physics and Institute for Quantum Science and Technology, Shanghai University, Shanghai 200444, China;
4 Shanghai Key Laboratory of High Temperature Superconductors and International Center of Quantum and Molecular Structures, Shanghai University, Shanghai 200444, China
Abstract  Determining the electronic structure of La3Ni2O7 is an essential step towards uncovering its superconducting mechanism. It is widely believed that the bilayer apical oxygens play an important role in the bilayer La3Ni2O7 electronic structure. Applying the hybrid exchange-correlation functionals, we obtain a more accurate electronic structure of La3Ni2O7 at its high-pressure phase, where the bonding dz2 band is below the Fermi level owing to the apical oxygen. The symmetry properties of this electronic structure and its corresponding tight-binding model are further analyzed. We find that the antisymmetric part is highly entangled, leading to a minimal nearly degenerate two-orbital model. Then, the apical oxygen vacancies effect is studied using the dynamical cluster approximation. This disorder effect strongly destroys the antisymmetric β Fermi surface, leading to the possible disappearance of superconductivity.
Keywords:  electronic structure      oxygen vacancies disorder      dynamical cluster approximation      bilayer superconducting nickelate  
Received:  16 January 2025      Revised:  25 February 2025      Accepted manuscript online:  27 February 2025
PACS:  71.23.-k (Electronic structure of disordered solids)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. NSFC-12494590, NSFC-12174428, and NSFC-12274279), the New Cornerstone Investigator Program, and the Chinese Academy of Sciences Project for Young Scientists in Basic Research (Grant No. 2022YSBR-048).
Corresponding Authors:  Yi Zhang, Kun Jiang     E-mail:  zhangyi821@shu.edu.cn;jiangkun@iphy.ac.cn

Cite this article: 

Yuxin Wang(王郁欣), Yi Zhang(张燚), and Kun Jiang(蒋坤) Electronic structure and disorder effect of La3Ni2O7 superconductor 2025 Chin. Phys. B 34 047105

[1] Sun H, Huo M, Hu X, Li J, Liu Z, Han Y, Tang L, Mao Z, Yang P,Wang B, Cheng J, Yao D X, Zhang G M and Wang M 2023 Nature 621 493
[2] Ko E K, Yu Y, Liu Y, Bhatt L, Li J, Thampy V, Kuo C T, Wang B Y, Lee Y, Lee K, Lee J S, Goodge B H, Muller D A and Hwang H Y 2024 Nature 638 8052
[3] Zhou G, Lv W, Wang H, Nie Z, Chen Y, Li Y, Huang H, Chen W, Sun Y, Xue Q K and Chen Z 2024 arXiv:2412.16622cond-mat.supr-con]
[4] Wang N, Wang G, Shen X, Hou J, Luo J, Ma X, Yang H, Shi L, Dou J, Feng J, Yang J, Shi Y, Ren Z, Ma H, Yang P, Liu Z, Liu Y, Zhang H, Dong X, Wang Y, Jiang K, Hu J, Nagasaki S, Kitagawa K, Calder S, Yan J, Sun J, Wang B, Zhou R, Uwatoko Y and Cheng J 2024 Nature 634 579
[5] Hou J, Yang P T, Liu Z Y, Li J Y, Shan P F, Ma L, Wang G, Wang N N, Guo H Z, Sun J P, et al. 2023 Chin. Phys. Lett. 40 117302
[6] Zhang Y, Su D, Huang Y, Shan Z, Sun H, Huo M, Ye K, Zhang J, Yang Z, Xu Y, Su Y, Li R, Smidman M, Wang M, Jiao L and Yuan H 2024 Nat. Phys. 20 1269
[7] Wang G, Wang N N, Shen X L, Hou J, Ma L, Shi L F, Ren Z A, Gu Y D, Ma H M, Yang P T, Liu Z Y, Guo H Z, Sun J P, Zhang G M, Calder S, Yan J Q, Wang B S, Uwatoko Y and Cheng J G 2024 Phys. Rev. X 14 011040
[8] Luo Z, Hu X, Wang M, Wu W and Yao D X 2023 Phys. Rev. Lett. 131 126001
[9] Zhang Y, Lin L F, Moreo A and Dagotto E 2023 Phys. Rev. B 108 L180510
[10] Yang Q G, Wang D and Wang Q H 2023 Phys. Rev. B 108 L140505
[11] Sakakibara H, Kitamine N, OchiMand Kuroki K 2024 Phys. Rev. Lett. 132 106002
[12] Gu Y, Le C, Yang Z, Wu X and Hu J 2023 arXiv:2306.07275condmat. supr-con]
[13] Shen Y, Qin M and Zhang G M 2023 Chin. Phys. Lett. 40 127401
[14] Christiansson V, Petocchi F and Werner P 2023 Phys. Rev. Lett. 131 206501
[15] Liu Y B, Mei J W, Ye F, Chen W Q and Yang F 2023 Phys. Rev. Lett. 131 236002
[16] Lu C, Pan Z, Yang F and Wu C 2024 Phys. Rev. Lett. 132 146002
[17] Qu X Z, Qu D W, Chen J, Wu C, Yang F, Li W and Su G 2024 Phys. Rev. Lett. 132 036502
[18] Zhang Y, Lin L F, Moreo A, Maier T A and Dagotto E 2024 Nat. Commun. 15 2470
[19] Yang Y F, Zhang G M and Zhang F C 2023 Phys. Rev. B 108 L201108
[20] Ryee S, Witt N and Wehling T O 2024 Phys. Rev. Lett. 133 096002
[21] Jiang K, Wang Z and Zhang F C 2024 Chin. Phys. Lett. 41 017402
[22] Fan Z, Zhang J F, Zhan B, Lv D, Jiang X Y, Normand B and Xiang T 2024 Phys. Rev. B 110 024514
[23] Puphal P, Reiss P, Enderlein N, Wu Y M, Khaliullin G, Sundaramurthy V, Priessnitz T, Knauft M, Suthar A, Richter L, Isobe M, van Aken P A, Takagi H, Keimer B, Suyolcu Y E, Wehinger B, Hansmann P and Hepting M 2024 Phys. Rev. Lett. 133 146002
[24] Chen X, Zhang J, Thind A S, Sharma S, LaBollita H, Peterson G, Zheng H, Phelan D P, Botana A S, Klie R F and Mitchell J F 2024 J. Am. Chem. Soc. 146 3640
[25] Ueki Y, Sakurai H, Nagata H, Yamane K, Matsumoto R, Terashima K, Hirose K, Ohta H, Kato M and Takano Y 2025 J. Phys. Soc. Jpn. 94 013703
[26] Dong Z, Huo M, Li J, Li J, Li P, Sun H, Gu L, Lu Y, Wang M, Wang Y and Chen Z 2024 Nature 630 847
[27] Li J, Ma P, Zhang H, Huang X, Huang C, Huo M, Hu D, Dong Z, He C, Liao J, et al. 2024 arXiv:2404.11369cond-mat.supr-con]
[28] Wang Y, Jiang K, Wang Z, Zhang F C and Hu J 2024 Phys. Rev. B 110 205122)
[29] Chen X, Choi J, Jiang Z, Mei J, Jiang K, Li J, Agrestini S, Garcia-Fernandez M, Sun H, Huang X, Shen D, Wang M, Hu J, Lu Y, Zhou K J and Feng D 2024 Nat. Commun. 15 9597
[30] Yang J, Sun H, Hu X, Xie Y, Miao T, Luo H, Chen H, Liang B, ZhuW, Qu G, et al. 2024 Nat. Commun. 15 4373
[31] Hettler M H, Mukherjee M, Jarrell M and Krishnamurthy H R 2000 Phys. Rev. B 61 12739
[32] Jarrell M and Krishnamurthy H R 2001 Phys. Rev. B 63 125102
[33] Maier T, Jarrell M, Pruschke T and Hettler M H 2005 Rev. Mod. Phys. 77 1027
[34] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[35] Martin R M 2020 Electronic structure: basic theory and practical methods (Cambridge University Press)
[36] Borlido P, Aull T, Huran A W, Tran F, Marques M A L and Botti S 2019 Journal of Chemical Theory and Computation 15 5069
[37] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169
[38] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758
[39] Becke A D 1993 The Journal of Chemical Physics 98 5648
[40] Perdew J P and Schmidt K 2001 AIP Conference Proceedings 577 1
[41] Krukau A V, Vydrov O A, Izmaylov A F and Scuseria G E 2006 The Journal of Chemical Physics 125 1
[42] Mostofi A A, Yates J R, Lee Y S, Souza I, Vanderbilt D and Marzari N 2008 Computer Physics Communications 178 685
[43] Marzari N, Mostofi A A, Yates J R, Souza I and Vanderbilt D 2012 Rev. Mod. Phys. 84 1419
[44] Sunshine S A, Siegrist T, Schneemeyer L F, Murphy D W, Cava R J, Batlogg B, van Dover R B, Fleming R M, Glarum S H, Nakahara S, Farrow R, Krajewski J J, Zahurak S M, Waszczak J V, Marshall J H, Marsh P, Rupp L W and Peck W F 1988 Phys. Rev. B 38 893
[45] Hazen R M, Prewitt C T, Angel R J, Ross N L, Finger LW, Hadidiacos C G, Veblen D R, Heaney P J, Hor P H, Meng R L, Sun Y Y, Wang Y Q, Xue Y Y, Huang Z J, Gao L, Bechtold J and Chu C W 1988 Phys. Rev. Lett. 60 1174
[46] Wang Z, Jiang K and Zhang F C 2024 arXiv:2412.18469cond-mat.strel]
[47] Zhang Y, Terletska H, Moore C, Ekuma C, Tam K M, Berlijn T, Ku W, Moreno J and Jarrell M 2015 Phys. Rev. B 92 205111
[1] Electron momentum spectroscopy study on trifluorobromomethane: Electronic structure and electron correlation
Guangqing Chen(陈广庆), Shanshan Niu(牛珊珊), Yanguo Tang(唐亚国), Yuting Zhang(张雨亭), Zhaohui Liu(刘朝辉), Chunkai Xu(徐春凯), Enliang Wang(王恩亮), Xu Shan(单旭), and Xiangjun Chen(陈向军). Chin. Phys. B, 2025, 34(4): 043401.
[2] Electronic structure and coexisting topological states in ferromagnetic and antiferromagnetic phases of MnBi2Te4 quantum wires
Jian Li(李健), Zhu-Cai Yin(尹柱财), Qing-Xu Li(李清旭), and Jia-Ji Zhu(朱家骥). Chin. Phys. B, 2025, 34(3): 037501.
[3] Electronic structure and carrier mobility of BSb nanotubes
Lantian Xue(薛岚天), Chennan Song(宋晨楠), Miaomiao Jian(见苗苗), Qiang Xu(许强), Yuhao Fu(付钰豪), Pengyue Gao(高朋越), and Yu Xie(谢禹). Chin. Phys. B, 2025, 34(3): 037304.
[4] Exploring superconductivity in dynamically stable carbon-boron clathrates trapping molecular hydrogen
Akinwumi Akinpelu, Mangladeep Bhullar, Timothy A. Strobel, and Yansun Yao. Chin. Phys. B, 2025, 34(3): 036103.
[5] Absence of BCS-BEC crossover in FeSe0.45Te0.55 superconductor
Junjie Jia(贾俊杰), Yadong Gu(谷亚东), Chaohui Yin(殷超辉), Yingjie Shu(束英杰), Yiwen Chen(陈逸雯), Jumin Shi(史聚民), Xing Zhang(张杏), Hao Chen(陈浩), Taimin Miao(苗泰民), Xiaolin Ren(任晓琳), Bo Liang(梁波), Wenpei Zhu(朱文培), Neng Cai(蔡能), Fengfeng Zhang(张丰丰), Shenjin Zhang(张申金), Feng Yang(杨峰), Zhimin Wang(王志敏), Qinjun Peng(彭钦军), Zuyan Xu(许祖彦), Hanqing Mao(毛寒青), Guodong Liu(刘国东), Zhian Ren(任治安), Lin Zhao(赵林), and Xing-Jiang Zhou(周兴江). Chin. Phys. B, 2024, 33(7): 077404.
[6] Negligible normal fluid in superconducting state of heavily overdoped Bi2Sr2CaCu2O8+δ detected by ultra-low temperature angle-resolved photoemission spectroscopy
Chaohui Yin(殷超辉), Qinghong Wang(汪清泓), Yuyang Xie(解于洋), Yiwen Chen(陈逸雯), Junhao Liu(刘俊豪), Jiangang Yang(杨鉴刚), Junjie Jia(贾俊杰), Xing Zhang(张杏), Wenkai Lv(吕文凯), Hongtao Yan(闫宏涛), Hongtao Rong(戎洪涛), Shenjin Zhang(张申金), Zhimin Wang(王志敏), Nan Zong(宗楠), Lijuan Liu(刘丽娟), Rukang Li(李如康), Xiaoyang Wang(王晓洋), Fengfeng Zhang(张丰丰), Feng Yang(杨峰), Qinjun Peng(彭钦军), Zuyan Xu(许祖彦), Guodong Liu(刘国东), Hanqing Mao(毛寒青), Lin Zhao(赵林), Xintong Li(李昕彤), and Xingjiang Zhou(周兴江). Chin. Phys. B, 2024, 33(7): 077405.
[7] Wafer-scale 30° twisted bilayer graphene epitaxially grown on Cu0.75Ni0.25 (111)
Peng-Cheng Ma(马鹏程), Ao Zhang(张翱), Hong-Run Zhen(甄洪润), Zhi-Cheng Jiang(江志诚), Yi-Chen Yang(杨逸尘), Jian-Yang Ding(丁建阳), Zheng-Tai Liu(刘正太), Ji-Shan Liu(刘吉山), Da-Wei Shen(沈大伟), Qing-Kai Yu(于庆凯), Feng Liu(刘丰), Xue-Fu Zhang(张学富), and Zhong-Hao Liu(刘中灏). Chin. Phys. B, 2024, 33(6): 066101.
[8] Electronic structure and effective mass of pristine and Cl-doped CsPbBr3
Zhiyuan Wei(魏志远), Yu-Hao Wei(魏愉昊), Shendong Xu(徐申东), Shuting Peng(彭舒婷), Makoto Hashimoto, Donghui Lu(路东辉), Xu Pan(潘旭), Min-Quan Kuang(匡泯泉), Zhengguo Xiao(肖正国), and Junfeng He(何俊峰). Chin. Phys. B, 2024, 33(5): 057403.
[9] Disassembling one-dimensional chains in molybdenum oxides
Xian Du(杜宪), Yidian Li(李义典), Wenxuan Zhao(赵文轩), Runzhe Xu(许润哲), Kaiyi Zhai(翟恺熠), Yulin Chen(陈宇林), and Lexian Yang(杨乐仙). Chin. Phys. B, 2024, 33(12): 127102.
[10] Geometries and electronic structures of ZrnCu(n =2-12) clusters: A joint machine-learning potential density functional theory investigation
Yizhi Wang(王一志), Xiuhua Cui(崔秀花), Jing Liu(刘静), Qun Jing(井群), Haiming Duan(段海明), and Haibin Cao(曹海宾). Chin. Phys. B, 2024, 33(1): 016109.
[11] Optical manipulation of the topological phase in ZrTe5 revealed by time- and angle-resolved photoemission
Chaozhi Huang(黄超之), Chengyang Xu(徐骋洋), Fengfeng Zhu(朱锋锋), Shaofeng Duan(段绍峰), Jianzhe Liu(刘见喆), Lingxiao Gu(顾凌霄), Shichong Wang(王石崇), Haoran Liu(刘浩然), Dong Qian(钱冬), Weidong Luo(罗卫东), and Wentao Zhang(张文涛). Chin. Phys. B, 2024, 33(1): 017901.
[12] Electronic structure study of the charge-density-wave Kondo lattice CeTe3
Bo Wang(王博), Rui Zhou(周锐), Xuebing Luo(罗学兵), Yun Zhang(张云), and Qiuyun Chen(陈秋云). Chin. Phys. B, 2023, 32(9): 097103.
[13] Pressure-induced phase transition and electronic structure evolution in layered semimetal HfTe2
Mei-Guang Zhang(张美光), Lei Chen(陈磊), Long Feng(冯龙), Huan-Huan Tuo(拓换换), Yun Zhang(张云), Qun Wei(魏群), and Pei-Fang Li(李培芳). Chin. Phys. B, 2023, 32(8): 086101.
[14] Critical behavior in the epitaxial growth of two-dimensional tellurium films on SrTiO3 (001) substrates
Haimin Zhang(张海民), Dezhi Song(宋德志), Fuyang Huang(黄扶旸), Jun Zhang(仉君), and Ye-Ping Jiang(蒋烨平). Chin. Phys. B, 2023, 32(6): 066802.
[15] Flat band in hole-doped transition metal dichalcogenide observed by angle-resolved photoemission spectroscopy
Zilu Wang(王子禄), Haoyu Dong(董皓宇), Weichang Zhou(周伟昌), Zhihai Cheng(程志海), and Shancai Wang(王善才). Chin. Phys. B, 2023, 32(6): 067103.
No Suggested Reading articles found!