Electronic structure and disorder effect of La3Ni2O7 superconductor
Yuxin Wang(王郁欣)1,2, Yi Zhang(张燚)3,4,†, and Kun Jiang(蒋坤)1,2,‡
1 Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China; 2 School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China; 3 Department of Physics and Institute for Quantum Science and Technology, Shanghai University, Shanghai 200444, China; 4 Shanghai Key Laboratory of High Temperature Superconductors and International Center of Quantum and Molecular Structures, Shanghai University, Shanghai 200444, China
Abstract Determining the electronic structure of LaNiO is an essential step towards uncovering its superconducting mechanism. It is widely believed that the bilayer apical oxygens play an important role in the bilayer LaNiO electronic structure. Applying the hybrid exchange-correlation functionals, we obtain a more accurate electronic structure of LaNiO at its high-pressure phase, where the bonding band is below the Fermi level owing to the apical oxygen. The symmetry properties of this electronic structure and its corresponding tight-binding model are further analyzed. We find that the antisymmetric part is highly entangled, leading to a minimal nearly degenerate two-orbital model. Then, the apical oxygen vacancies effect is studied using the dynamical cluster approximation. This disorder effect strongly destroys the antisymmetric Fermi surface, leading to the possible disappearance of superconductivity.
Received: 16 January 2025
Revised: 25 February 2025
Accepted manuscript online: 27 February 2025
PACS:
71.23.-k
(Electronic structure of disordered solids)
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. NSFC-12494590, NSFC-12174428, and NSFC-12274279), the New Cornerstone Investigator Program, and the Chinese Academy of Sciences Project for Young Scientists in Basic Research (Grant No. 2022YSBR-048).
Corresponding Authors:
Yi Zhang, Kun Jiang
E-mail: zhangyi821@shu.edu.cn;jiangkun@iphy.ac.cn
Cite this article:
Yuxin Wang(王郁欣), Yi Zhang(张燚), and Kun Jiang(蒋坤) Electronic structure and disorder effect of La3Ni2O7 superconductor 2025 Chin. Phys. B 34 047105
[1] Sun H, Huo M, Hu X, Li J, Liu Z, Han Y, Tang L, Mao Z, Yang P,Wang B, Cheng J, Yao D X, Zhang G M and Wang M 2023 Nature 621 493 [2] Ko E K, Yu Y, Liu Y, Bhatt L, Li J, Thampy V, Kuo C T, Wang B Y, Lee Y, Lee K, Lee J S, Goodge B H, Muller D A and Hwang H Y 2024 Nature 638 8052 [3] Zhou G, Lv W, Wang H, Nie Z, Chen Y, Li Y, Huang H, Chen W, Sun Y, Xue Q K and Chen Z 2024 arXiv:2412.16622cond-mat.supr-con] [4] Wang N, Wang G, Shen X, Hou J, Luo J, Ma X, Yang H, Shi L, Dou J, Feng J, Yang J, Shi Y, Ren Z, Ma H, Yang P, Liu Z, Liu Y, Zhang H, Dong X, Wang Y, Jiang K, Hu J, Nagasaki S, Kitagawa K, Calder S, Yan J, Sun J, Wang B, Zhou R, Uwatoko Y and Cheng J 2024 Nature 634 579 [5] Hou J, Yang P T, Liu Z Y, Li J Y, Shan P F, Ma L, Wang G, Wang N N, Guo H Z, Sun J P, et al. 2023 Chin. Phys. Lett. 40 117302 [6] Zhang Y, Su D, Huang Y, Shan Z, Sun H, Huo M, Ye K, Zhang J, Yang Z, Xu Y, Su Y, Li R, Smidman M, Wang M, Jiao L and Yuan H 2024 Nat. Phys. 20 1269 [7] Wang G, Wang N N, Shen X L, Hou J, Ma L, Shi L F, Ren Z A, Gu Y D, Ma H M, Yang P T, Liu Z Y, Guo H Z, Sun J P, Zhang G M, Calder S, Yan J Q, Wang B S, Uwatoko Y and Cheng J G 2024 Phys. Rev. X 14 011040 [8] Luo Z, Hu X, Wang M, Wu W and Yao D X 2023 Phys. Rev. Lett. 131 126001 [9] Zhang Y, Lin L F, Moreo A and Dagotto E 2023 Phys. Rev. B 108 L180510 [10] Yang Q G, Wang D and Wang Q H 2023 Phys. Rev. B 108 L140505 [11] Sakakibara H, Kitamine N, OchiMand Kuroki K 2024 Phys. Rev. Lett. 132 106002 [12] Gu Y, Le C, Yang Z, Wu X and Hu J 2023 arXiv:2306.07275condmat. supr-con] [13] Shen Y, Qin M and Zhang G M 2023 Chin. Phys. Lett. 40 127401 [14] Christiansson V, Petocchi F and Werner P 2023 Phys. Rev. Lett. 131 206501 [15] Liu Y B, Mei J W, Ye F, Chen W Q and Yang F 2023 Phys. Rev. Lett. 131 236002 [16] Lu C, Pan Z, Yang F and Wu C 2024 Phys. Rev. Lett. 132 146002 [17] Qu X Z, Qu D W, Chen J, Wu C, Yang F, Li W and Su G 2024 Phys. Rev. Lett. 132 036502 [18] Zhang Y, Lin L F, Moreo A, Maier T A and Dagotto E 2024 Nat. Commun. 15 2470 [19] Yang Y F, Zhang G M and Zhang F C 2023 Phys. Rev. B 108 L201108 [20] Ryee S, Witt N and Wehling T O 2024 Phys. Rev. Lett. 133 096002 [21] Jiang K, Wang Z and Zhang F C 2024 Chin. Phys. Lett. 41 017402 [22] Fan Z, Zhang J F, Zhan B, Lv D, Jiang X Y, Normand B and Xiang T 2024 Phys. Rev. B 110 024514 [23] Puphal P, Reiss P, Enderlein N, Wu Y M, Khaliullin G, Sundaramurthy V, Priessnitz T, Knauft M, Suthar A, Richter L, Isobe M, van Aken P A, Takagi H, Keimer B, Suyolcu Y E, Wehinger B, Hansmann P and Hepting M 2024 Phys. Rev. Lett. 133 146002 [24] Chen X, Zhang J, Thind A S, Sharma S, LaBollita H, Peterson G, Zheng H, Phelan D P, Botana A S, Klie R F and Mitchell J F 2024 J. Am. Chem. Soc. 146 3640 [25] Ueki Y, Sakurai H, Nagata H, Yamane K, Matsumoto R, Terashima K, Hirose K, Ohta H, Kato M and Takano Y 2025 J. Phys. Soc. Jpn. 94 013703 [26] Dong Z, Huo M, Li J, Li J, Li P, Sun H, Gu L, Lu Y, Wang M, Wang Y and Chen Z 2024 Nature 630 847 [27] Li J, Ma P, Zhang H, Huang X, Huang C, Huo M, Hu D, Dong Z, He C, Liao J, et al. 2024 arXiv:2404.11369cond-mat.supr-con] [28] Wang Y, Jiang K, Wang Z, Zhang F C and Hu J 2024 Phys. Rev. B 110 205122) [29] Chen X, Choi J, Jiang Z, Mei J, Jiang K, Li J, Agrestini S, Garcia-Fernandez M, Sun H, Huang X, Shen D, Wang M, Hu J, Lu Y, Zhou K J and Feng D 2024 Nat. Commun. 15 9597 [30] Yang J, Sun H, Hu X, Xie Y, Miao T, Luo H, Chen H, Liang B, ZhuW, Qu G, et al. 2024 Nat. Commun. 15 4373 [31] Hettler M H, Mukherjee M, Jarrell M and Krishnamurthy H R 2000 Phys. Rev. B 61 12739 [32] Jarrell M and Krishnamurthy H R 2001 Phys. Rev. B 63 125102 [33] Maier T, Jarrell M, Pruschke T and Hettler M H 2005 Rev. Mod. Phys. 77 1027 [34] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865 [35] Martin R M 2020 Electronic structure: basic theory and practical methods (Cambridge University Press) [36] Borlido P, Aull T, Huran A W, Tran F, Marques M A L and Botti S 2019 Journal of Chemical Theory and Computation 15 5069 [37] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169 [38] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758 [39] Becke A D 1993 The Journal of Chemical Physics 98 5648 [40] Perdew J P and Schmidt K 2001 AIP Conference Proceedings 577 1 [41] Krukau A V, Vydrov O A, Izmaylov A F and Scuseria G E 2006 The Journal of Chemical Physics 125 1 [42] Mostofi A A, Yates J R, Lee Y S, Souza I, Vanderbilt D and Marzari N 2008 Computer Physics Communications 178 685 [43] Marzari N, Mostofi A A, Yates J R, Souza I and Vanderbilt D 2012 Rev. Mod. Phys. 84 1419 [44] Sunshine S A, Siegrist T, Schneemeyer L F, Murphy D W, Cava R J, Batlogg B, van Dover R B, Fleming R M, Glarum S H, Nakahara S, Farrow R, Krajewski J J, Zahurak S M, Waszczak J V, Marshall J H, Marsh P, Rupp L W and Peck W F 1988 Phys. Rev. B 38 893 [45] Hazen R M, Prewitt C T, Angel R J, Ross N L, Finger LW, Hadidiacos C G, Veblen D R, Heaney P J, Hor P H, Meng R L, Sun Y Y, Wang Y Q, Xue Y Y, Huang Z J, Gao L, Bechtold J and Chu C W 1988 Phys. Rev. Lett. 60 1174 [46] Wang Z, Jiang K and Zhang F C 2024 arXiv:2412.18469cond-mat.strel] [47] Zhang Y, Terletska H, Moore C, Ekuma C, Tam K M, Berlijn T, Ku W, Moreno J and Jarrell M 2015 Phys. Rev. B 92 205111
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.