Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(3): 037301    DOI: 10.1088/1674-1056/ada885
Special Issue: TOPICAL REVIEW — Moiré physics in two-dimensional materials
TOPICAL REVIEW — Moiré physics in two-dimensional materials Prev   Next  

Higher-order topology in twisted multilayer systems: A review

Chunbo Hua(花春波)1,2 and Dong-Hui Xu(许东辉)3,4,†
1 Key Laboratory of Artificial Micro- and Nanostructures of Ministry of Education and School of Physics and Technology, Wuhan University, Wuhan 430072, China;
2 School of Electronic and Information Engineering, Hubei University of Science and Technology, Xianning 437100, China;
3 Department of Physics and Chongqing Key Laboratory for Strongly Coupled Physics, Chongqing University, Chongqing 400044, China;
4 Center of Quantum Materials and Devices, Chongqing University, Chongqing 400044, China
Abstract  In recent years, there has been a surge of interest in higher-order topological phases (HOTPs) across various disciplines within the field of physics. These unique phases are characterized by their ability to harbor topological protected boundary states at lower-dimensional boundaries, a distinguishing feature that sets them apart from conventional topological phases and is attributed to the higher-order bulk-boundary correspondence. Two-dimensional (2D) twisted systems offer an optimal platform for investigating HOTPs, owing to their strong controllability and experimental feasibility. Here, we provide a comprehensive overview of the latest research advancements on HOTPs in 2D twisted multilayer systems. We will mainly review the HOTPs in electronic, magnonic, acoustic, photonic and mechanical twisted systems, and finally provide a perspective of this topic.
Keywords:  higher-order topology      twisted multilayer systems      van der Waals materials      corner states  
Received:  21 October 2024      Revised:  08 January 2025      Accepted manuscript online:  10 January 2025
PACS:  73.21.Cd (Superlattices)  
  73.22.Pr (Electronic structure of graphene)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 12304539, 12074108, 12474151, and 12347101), the Natural Science Foundation of Chongqing (Grant No. CSTB2022NSCQ-MSX0568), and Beijing National Laboratory for Condensed Matter Physics (Grant No. 2024BNLCMPKF025).
Corresponding Authors:  Dong-Hui Xu     E-mail:  donghuixu@cqu.edu.cn

Cite this article: 

Chunbo Hua(花春波) and Dong-Hui Xu(许东辉) Higher-order topology in twisted multilayer systems: A review 2025 Chin. Phys. B 34 037301

[1] Benalcazar W A, Bernevig B A and Hughes T L 2017 Science 357 61-66
[2] Benalcazar W A, Bernevig B A and Hughes T L 2017 Phys. Rev. B 96 245115
[3] Langbehn J, Peng Y, Trifunovic L, von Oppen F and Brouwer P W 2017 Phys. Rev. Lett. 119 246401
[4] Song Z, Fang Z and Fang C 2017 Phys. Rev. Lett. 119 246402
[5] Schindler F, Cook A M, Vergniory M G, Wang Z, Parkin S S P, Bernevig B A and Neupert T 2018 Sci. Adv. 4 eaat0346
[6] Yan Z B 2019 Acta Phys. Sin. 68 226101 (in Chinese)
[7] Xie B,Wang H X, Zhang X, Zhan P, Jiang J H, Lu M and Chen Y 2021 Nat. Rev. Phys. 3 520
[8] Yang Y B, Wang J H, Li K and Xu Y 2024 J. Phys. Condens. Matter 36 283002
[9] Wieder B J, Bradlyn B, Cano J, Wang Z, Vergniory M G, Elcoro L, Soluyanov A A, Felser C, Neupert T, Regnault N and Bernevig B A 2022 Nat. Rev. Mater. 7 196
[10] Garcia M S, Peri V, Susstrunk R, Bilal O R, Larsen T, Villanueva L G and Huber S D 2018 Nature 555 342
[11] Peterson C W, Benalcazar W A, Hughes T L and Bahl G 2018 Nature 555 346
[12] Schindler F, Wang Z, Vergniory M G, Cook A M, Murani A, Sengupta S, Kasumov A Y, Deblock R, S Jeon, Drozdov I, Bouchiat H, Gueron S, Yazdani A, Bernevig B A and Neupert T 2018 Nat. Phys. 14 918
[13] Imhof S, Berger C, Bayer F, Brehm J, Molenkamp L W, Kiessling T, Schindler F, Lee C H, Greiter M, Neupert T and Thomale R 2018 Nat. Phys. 14 925
[14] Xu Y, Song Z, Wang Z, Weng H and Dai X 2019 Phys. Rev. Lett. 122 256402
[15] Yue C, Xu Y, Song Z, Weng H, Lu Y M, Fang C and Dai X 2019 Nat. Phys. 15 577
[16] Xue H, Yang Y, Gao F, Chong Y and Zhang B 2019 Nat. Mater. 18 108
[17] Ni X, Weiner M, Alu A and Khanikaev A B 2019 Nat. Mater. 18 113
[18] Sheng X L, Chen C, Liu H, Chen Z, Yu Z M, Zhao Y X and Yang S A 2019 Phys. Rev. Lett. 123 256402
[19] Ren Y, Qiao Z and Niu Q 2020 Phys. Rev. Lett. 124 166804
[20] Zhang R X, Wu F and Sarma S D 2020 Phys. Rev. Lett. 124 136407
[21] Chen R, Liu T, Wang C M, Lu H Z and Xie X C 2021 Phys. Rev. Lett. 127 066801
[22] Chen R, Zhou B and Xu D H 2023 Phys. Rev. B 108 195306
[23] Xu X X, Wang Z M, Xu D H and Chen C Z 2024 Chin. Phys. B 33 067801
[24] Zhan F, Qin Z, Xu D H, Zhou X, Ma D S, Wang R 2024 Nano Lett. 24 7741
[25] Chen H, Liu Z R, Chen R and Zhou B 2023 Chin. Phys. B 33 017202
[26] Yan Z, Song F and Wang Z 2018 Phys. Rev. Lett. 121 096803
[27] Yan Z 2019 Phys. Rev. Lett. 123 177001
[28] Yan Z 2019 Phys. Rev. B 100 205406
[29] Zhu D, Kheirkhah M and Yan Z 2023 Phys. Rev. B 107 085407
[30] Zeng Q B, Yang Y B and Xu Y 2020 Phys. Rev. B 101 241104(R)
[31] Yang Y B, Li K, Duan L M and Xu Y 2020 Phys. Rev. Research 2 033029
[32] Tao Y L, Dai N, Yang Y B, Zeng Q B and Xu Y 2020 New J. Phys. 22 103058
[33] Yang Y B, Li K, Duan L M and Xu Y 2021 Phys. Rev. B 103 085408
[34] Peng Y, Liu E, Yan B, Xie J, Shi A, Peng P, Li H and Liu J 2022 Opt. Lett. 47 3011
[35] Shi A, Peng Y, Peng P, Chen J and Liu J 2024 Phys. Rev. B 110 014106
[36] Zhao P L, Qiang X B, Lu H Z and Xie X C 2021 Phys. Rev. Lett. 127 176601
[37] Liu T, He J J and Nori F 2018 Phys. Rev. B 98 245413
[38] Liu T, Zhang Y R, Ai Q, Gong Z, Kawabata K, Ueda M and Nori F 2019 Phys. Rev. Lett. 122 076801
[39] Liu T, He J J, Yang Z and Nori F 2021 Phys. Rev. Lett. 127 196801
[40] Lu C, Cai Z F, Zhang M, Wang H, Ai Q and Liu T 2023 Phys. Rev. B 107 165403
[41] Qi Y, Qiu C, Xiao M, He H, Ke M and Liu Z 2020 Phys. Rev. Lett. 124 206601
[42] Wu J, Huang X, Lu J, Wu Y, Deng W, Li F and Liu Z 2020 Phys. Rev. B 102 104109
[43] Yang Y, Lu J, Yan M, Huang X, Deng W and Liu Z 2021 Phys. Rev. Lett. 126 156801
[44] Wei Q, Zhang X, Deng W, Lu J, Huang X, Yan M, Chen G, Liu Z and Jia S 2021 Phys. Rev. Lett. 127 255501
[45] Wu J, Huang X, Yang Y, Deng W, Lu J, Deng W and Liu Z 2022 Phys. Rev. B 105 195127
[46] Wang Z, Ye L, Pu Z, Ma Q, He H, Lu J, Deng W, Huang X, Ke M and Liu Z 2024 Commun. Phys. 7 193
[47] Ye L, Wang Q, Fu Z, He H, Huang X, Ke M, Lu J, Deng W and Liu Z 2024 Phys. Rev. Lett. 133 126602
[48] Huang X, Lu J, Yan Z, Yan M, Deng W, Chen G and Liu Z 2022 Sci. Bull. 5 488
[49] Qi Y, He H and Xiao M 2022 Appl. Phys. Lett. 120 212202
[50] Qi Y, He Z, Deng K, Li J and Wang Y 2024 Phys. Rev. B 109 L060101
[51] Pu Z, He H, Luo L, Ma Q, Ye L, Ke M and Liu Z 2023 Phys. Rev. Lett. 130 116103
[52] Ma Q, Pu Z, Ye L, Lu J, Huang X, Ke M, He H, Deng W and Liu Z 2024 Phys. Rev. Lett. 132 066601
[53] Luo X J, Pan X H, Liu C X and Liu X 2023 Phys. Rev. B 107 045118
[54] Liu F 2023 Phys. Rev. B 108 245140
[55] Luo X J and Wu F 2023 Phys. Rev. B 108 075143
[56] Liu Z, Ren Y, Han Y, Niu Q and Qiao Z 2022 Phys. Rev. B 106 195303
[57] Liu Z R, Hu L H, Chen C Z, Zhou B and Xu D H 2021 Phys. Rev. B 103 L201115
[58] Lu C, Zhang M,Wang H, Ai Q and Liu T 2023 Phys. Rev. B 107 125118
[59] Hu Y, Liu S, Pan B, Zhou P and Sun L 2024 Phys. Rev. B 109 L121403
[60] Chen R, Zhou B and Xu D H 2024 Phys. Rev. B 110 L121301
[61] Peng T, Xiong Y C, Hua C B, Liu Z R, Zhu X, Cao W, Lv F, Hou Y, Zhou B, Wang Z and Xiong R 2024 Phys. Rev. B 109 195301
[62] Wu Y J, He W, Li N, Li Z and Hou J 2022 Phys. Rev. A 106 063524
[63] Li C A 2022 Front. Phys. 10 861242
[64] Chen X T, Liu C H, Xu D H and Chen C Z 2023 Chin. Phys. Lett. 40 097403
[65] Li J, Kuang M, Bai J, Ding G, Yuan H, Xie C, Wang W and Wang X 2023 Appl. Phys. Lett. 123 012201
[66] Guo Z, Liu Y, Jiang H, Zhang X, Jin L, Liu C and Liu G 2023 Materials Today Physics 36 101153
[67] Miao C M, Wan Y H, Sun Q F and Zhang Y T 2023 Phys. Rev. B 108 075401
[68] Scammell H D, Ingham J, Geier M and Li T 2022 Phys. Rev. B 105 195149
[69] Habel J, Mook A, Willsher J and Knolle J 2024 Phys. Rev. B 109 024441
[70] Volovik G E 2010 JETP Lett. 91 201
[71] Slager R J, Rademaker L, Zaanen J and Balents L 2015 Phys. Rev. B 92 085126
[72] Halder D, Lahiri S and Basu S 2024 Phys. Rev. B 110 115132
[73] He H, Pu Z, Ma Q, Dong Z, Ye L, Ke M and Liu Z 2023 Phys. Rev. Appl. 20 064034
[74] Varjas D, Lau A, Poyhonen K, Akhmerov A R, Pikulin D I and Fulga I C 2019 Phys. Rev. Lett. 123 196401
[75] Chen R, Chen C Z, Gao J H, Zhou B and Xu D H 2020 Phys. Rev. Lett. 124 036803
[76] Hua C B, Chen R, Zhou B and Xu D H 2020 Phys. Rev. B 102 241102(R)
[77] Huang H, Fan J, Li D and Liu F 2021 Nano Lett. 21 7056
[78] Peng T, Hua C B, Chen R, Liu Z R, Xu D H and Zhou B 2021 Phys. Rev. B 104 245302
[79] Wang C, Liu F and Huang H 2022 Phys. Rev. Lett. 129 056403
[80] Xiong L, Zhang Y, Liu Y, Zheng Y and Jiang X 2022 Phys. Rev. Appl. 18 064089
[81] Mao Y F, Tao Y L, Wang J H, Zeng Q B and Xu Y 2024 Phys. Rev. B 109 134205
[82] Ouyang C, He Q, Xu D H and Liu F 2024 Phys. Rev. B 110 075425
[83] Lv B, Chen R, Li R, Guan C, Zhou B, Dong G, Zhao C, Li Y, Wang Y, Tao H, Shi J and Xu D H 2021 Commun. Phys. 4 108
[84] Spurrier S and Cooper N R 2020 Phys. Rev. Research 2 033071
[85] Traverso S, Traverso Ziani N and Sassetti M 2022 Symmetry 14 1736
[86] Traverso S, Sassetti M and Ziani N T 2022 Phys. Rev. B 106 125428
[87] Shi A, Peng Y, Jiang J, Peng Y, Peng P, Chen J, Chen H,Wen S, Lin X, Gao F and Liu J 2024 Laser Photonics Rev. 18 2300956
[88] Agarwala A, Juricic V and Roy B 2020 Phys. Rev. Research 2 012067(R)
[89] Wang J H, Yang Y B, Dai N and Xu Y 2021 Phys. Rev. Lett. 126 206404
[90] Peng T, Hua C B, Chen R, Liu Z R, Huang H M and Zhou B 2022 Phys. Rev. B 106 125310
[91] Tao Y L, Wang J H and Xu Y 2023 SciPost Phys. 15 193
[92] Manna S, Nandy S and Roy B 2022 Phys. Rev. B 105 L201301
[93] Zheng S, Man X, Kong Z L, Lin Z K, Duan G, Chen N, Yu D, Jiang J H and Xia B 2022 Sci. Bull. 67 2069
[94] Chen H, Liu Z R, Chen R and Zhou B 2023 Chin. Phys. B 33 017202
[95] Tao Y L and Xu Y 2023 Phys. Rev. B 107 184201
[96] Liu Z R, Hua C B, Peng T, Chen R and Zhou B 2023 Phys. Rev. B 107 125302
[97] Li C A, Fu B, Hu Z A, Li J and Shen S Q 2020 Phys. Rev. Lett. 125 166801
[98] Zhang W, Zou D, Pei Q, He W, Bao J, Sun H and Zhang X 2021 Phys. Rev. Lett. 126 146802
[99] Liu H, Zhou J K, Wu B L, Zhang Z Q and Jiang H 2021 Phys. Rev. B 103 224203
[100] Yang Y B, Li K, Duan L M and Xu Y 2021 Phys. Rev. B 103 085408
[101] Hu Y S, Ding Y R, Zhang J, Zhang Z Q and Chen C Z 2021 Phys. Rev. B 104 094201
[102] Zhang Z Q, Wu B L, Chen C Z and Jiang H 2021 Phys. Rev. B 104 014203
[103] Ning Z, Fu B, Xu D H and Wang R 2022 Phys. Rev. B 105 L201114
[104] Li C A, Zhang S B, Budich J C and Trauzettel B 2022 Phys. Rev. B 106 L081410
[105] Ghosh A K, Nag T and Saha A 2024 Phys. Rev. B 110 125427
[106] Cao Y, Fatemi V, Fang S, Watanabe K, Taniguchi T, Kaxiras E and Jarillo-Herrero P 2018 Nature 556 43
[107] Cao Y, Fatemi V, Demir A, Fang S, Tomarken S L, Luo J Y, Sanchez- Yamagishi J D, Watanabe K, Taniguchi T, Kaxiras E, Ashoori R C and Jarillo-Herrero P 2018 Nature 556 80
[108] Bistritzer R and MacDonald A H 2011 Proc. Natl. Acad. Sci. USA 108 12233
[109] Serlin M, Tschirhart C L, Polshyn H, Zhang Y, Zhu J, Watanabe K, Taniguchi T, Balents L, Young A F 2020 Science 367 900
[110] Wu F, Lovorn T, Tutuc E, Martin I and MacDonald A H 2019 Phys. Rev. Lett. 122 086402
[111] ParkMJ, Kim Y, Cho G Y and Lee S 2019 Phys. Rev. Lett. 123 216803
[112] Liu B, Xian L, Mu H, Zhao G, Liu Z, Rubio A and Wang Z F 2021 Phys. Rev. Lett. 126 066401
[113] Park M J, Jeon S, Lee S, Park H C and Kim Y 2021 Carbon 175 260
[114] Liu B B, Zeng X T, C Chen, Chen Z and Sheng X L 2022 Phys. Rev. B 106 035153
[115] Kim SW, Jeon S, Park M J and Kim Y 2023 npj Comput. Mater. 9 152
[116] Chew A, Wang Y, Bernevig B A and Song Z D 2023 Phys. Rev. B 107 094512
[117] Qian S, Li Y and Liu C C 2023 Phys. Rev. B 108 L241406
[118] Hua C B, Xiao F, Liu Z R, Sun J H, Gao J H, Chen C Z, Tong Q, Zhou B and Xu D H 2023 Phys. Rev. B 107 L020404
[119] Wu S Q, Lin Z K, Jiang B, Zhou X, Hang Z H, Hou B and Jiang J H 2022 Phys. Rev. Applied 17 034061
[120] Oudich M, Su G, Deng Y, Benalcazar W, Huang R, Gerard N J R K, Lu M, Zhan P and Jing Y 2021 Phys. Rev. B 103 214311
[121] Yi C H, Park H C and Park M J 2022 Light Sci. Appl. 11 289
[122] Danawe H, Li H, Ba’ba’a H A and Tol S 2021 Phys. Rev. B 104 L241107
[123] Miao C M, Wan Y H, Zhang Y T and Sun Q F arXiv:2409.19328
[124] Yin J X, Lian B and Hasan M Z 2022 Nature 612 647
[125] Neupert T, Denner M M, Yin J X, Thomale R and Hasan M Z 2023 Nat. Rev. Phys. 5 635
[126] Wang Y, Wu H, McCandless G T, Chan J Y and Ali M 2023 Nat. Rev. Phys. 5 635
[127] Wilson S D, Ortiz B R 2024 Nat. Rev. Mater. 9 420
[128] Crasto de Lima F, Miwa R H, and Susrez Morell E 2019 Phys. Rev. B 100 155421
[129] Wan X, Zeng J, Zhu R, Xu D H, Zheng B and Wang R arXiv:2410.08487
[130] Chen C, Zeng X T and Yao W 2025 Rep. Prog. Phys. 88 018001
[131] Ahn S J, Moon P, Kim T H, Kim H W, Shin H C, Kim E H, Cha H W, Kahng S J, Kim P, Koshino M, Son Y W, Yang C W and Ahn J R 2018 Science 361 782
[132] Yao W, Wang E, Bao C, Zhang Y, Zhang K, Bao K, Chan C K, Chen C, Avila J, Asensio M C, Zhu J and Zhou S 2018 Proc. Natl. Acad. Sci. USA 115 6928
[133] Li Y, Zhang F, Ha V A, Lin Y C, Dong C, Gao Q, Liu Z, Liu X, Ryu S H, Kim H, Jozwiak C, Bostwick A, Watanabe K, Taniguchi T, Kousa B, Li X, Rotenberg E, Khalaf E, Robinson J A, Giustino F and Shih C K 2024 Nature 625 494
[134] Tsang C S, Zheng X, Yang T, Yan Z, Han W, Wong L W, Liu H, Gao S, Leung K H, Lee C S, Lau S P, Yang M, Zhao J and Ly T H 2024 Science 386 198
[135] Sil A and Ghosh A K 2020 J. Phys.: Condens. Matter 32 205601
[136] Hirosawa T, Diaz S A, Klinovaja J and Loss D 2020 Phys. Rev. Lett. 125 207204
[137] Mook A, Diaz S A, linovaja J K and Loss D 2021 Phys. Rev. B 104 024406
[138] Li Z X, Cao Y, Wang X R and Yan P 2020 Phys. Rev. B 101 184404
[139] Li Z X, Wang Z, Zhang Z, Cao Y and Yan P 2021 Phys. Rev. B 103 214442
[140] Park M J, Lee S and Kim Y B 2021 Phys. Rev. B 104 L060401
[141] Li Y M, Wu Y J, Luo X W, Huang Y and Chang K 2022 Phys. Rev. B 106 054403
[142] Bhowmik S, Banerjee S and Saha A 2024 Phys. Rev. B 109 104417
[143] Ahn Y, Guo X, Son S, Sun Z, Zhao L 2024 Progress in Quantum Electronics 93 100498
[144] Li Y H and Cheng R 2020 Phys. Rev. B 102 094404
[145] Wang C, Gao Y, Lv H, Xu X and Xiao D 2020 Phys. Rev. Lett. 125 247201
[146] Wang H, Madami M, Chen J, Jia H, Zhang Y, Yuan R, Wang Y, He W, Sheng L, Zhang Y, Wang J, Liu S, Shen K, Yu G, Han X, Yu D, Ansermet J P, Gubbiotti G and Yu H 2023 Phys. Rev. X 13 021016
[147] Bostrom E V, Claassen M, McIver J W, Jotzu G, Rubio A, Sentef M A 2020 SciPost Phys. 9 061
[148] Kim K M, Kiem D H, Bednik G, Han M J, Park M J 2023 Nano Lett. 23 6088-6094
[149] Liu J, Wang L and K Shen 2020 Phys. Rev. B 102 144416
[150] Zhu X, Guo H and S Feng 2021 Chin. Phys. B 30 077505
[151] Ghader D 2020 Sci. Rep. 10 15069
[152] Hejazi K, Luo Z X and Balents L Proc. Natl. Acad. Sci. USA 117 10721
[1] Topological transmission and topological corner states combiner in all-dielectric honeycomb valley photonic crystals
Ming Sun(孙铭), Xiao-Fang Xu(许孝芳), Yun-Feng Shen(沈云峰), Ya-Qing Chang(常雅箐), and Wen-Ji Zhou(周文佶). Chin. Phys. B, 2025, 34(3): 034206.
[2] Unveiling the in-plane anisotropic dielectric waveguide modes in α-MoO3 flakes
Ying Liao(廖莹) and Jianing Chen(陈佳宁). Chin. Phys. B, 2024, 33(7): 078401.
[3] Photoinduced Floquet higher-order Weyl semimetal in C6 symmetric Dirac semimetals
Xin-Xin Xu(许欣欣), Zi-Ming Wang(王梓名), Dong-Hui Xu(许东辉), and Chui-Zhen Chen(陈垂针). Chin. Phys. B, 2024, 33(6): 067801.
[4] Topological edge and corner states of valley photonic crystals with zipper-like boundary conditions
Yun-Feng Shen(沈云峰), Xiao-Fang Xu(许孝芳), Ming Sun(孙铭), Wen-Ji Zhou(周文佶), and Ya-Jing Chang(常雅箐). Chin. Phys. B, 2024, 33(4): 044203.
[5] Tailoring topological corner states in photonic crystals by near- and far-field coupling effects
Zhao-Jian Zhang(张兆健), Zhi-Hao Lan(兰智豪), Huan Chen(陈欢), Yang Yu(于洋), and Jun-Bo Yang(杨俊波). Chin. Phys. B, 2023, 32(12): 124201.
[6] Strain-dependent resistance and giant gauge factor in monolayer WSe2
Mao-Sen Qin(秦茂森), Xing-Guo Ye(叶兴国), Peng-Fei Zhu(朱鹏飞), Wen-Zheng Xu(徐文正), Jing Liang(梁晶), Kaihui Liu(刘开辉), and Zhi-Min Liao(廖志敏). Chin. Phys. B, 2021, 30(9): 097203.
[7] Magnetic two-dimensional van der Waals materials forspintronic devices
Yu Zhang(张雨), Hongjun Xu(许洪军), Jiafeng Feng(丰家峰), Hao Wu(吴昊), Guoqiang Yu(于国强), and Xiufeng Han(韩秀峰). Chin. Phys. B, 2021, 30(11): 118504.
[8] Raman scattering study of two-dimensional magnetic van der Waals compound VI3
Yi-Meng Wang(王艺朦), Shang-Jie Tian(田尚杰), Cheng-He Li(李承贺), Feng Jin(金峰), Jian-Ting Ji(籍建葶), He-Chang Lei(雷和畅), Qing-Ming Zhang(张清明). Chin. Phys. B, 2020, 29(5): 056301.
[9] Raman scattering study of magnetic layered MPS3 crystals (M=Mn, Fe, Ni)
Yi-Meng Wang(王艺朦), Jian-Feng Zhang(张建丰), Cheng-He Li(李承贺), Xiao-Li Ma(马肖莉), Jian-Ting Ji(籍建葶), Feng Jin(金峰), He-Chang Lei(雷和畅), Kai Liu(刘凯), Wei-Lu Zhang(张玮璐), Qing-Ming Zhang(张清明). Chin. Phys. B, 2019, 28(5): 056301.
No Suggested Reading articles found!