Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(2): 027403    DOI: 10.1088/1674-1056/ada432
RAPID COMMUNICATION Prev   Next  

Possible coexistence of superconductivity and topological electronic states in 1T-RhSeTe

Tengdong Zhang(张腾东)1†, Rui Fan(樊睿)1†, Yan Gao(高炎)1, Yanling Wu(吴艳玲)1, Xiaodan Xu(徐晓丹)1, Dao-Xin Yao(姚道新)2‡, and Jun Li(李军)
1 Hebei Key Laboratory of Microstructural Material Physics, School of Science, Yanshan University, Qinhuangdao 066004, China;
2 State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Provincial Key Laboratory of Magnetoelectric Physics and Devices, School of Physics, Sun Yat-Sen University, Guangzhou 510275, China
Abstract  Transition metal dichalcogenides (TMDs), exhibit a range of crystal structures and topological quantum states. The 1T phase, in particular, shows promise for superconductivity driven by electron-phonon coupling (EPC), strain, pressure, and chemical doping. In this theoretical investigation, we explore 1T-RhSeTe as a novel type of TMD superconductor with topological electronic states. The optimal doping structure and atomic arrangement of 1T-RhSeTe are constructed. Phonon spectrum calculations validate the integrity of the constructed doping structure. The analysis of the electron-phonon coupling using the electron-phonon Wannier (EPW) method has confirmed the existence of a robust electron-phonon interaction in 1T-RhSeTe, resulting in total EPC constant λ = 2.02, the logarithmic average frequency ωlog = 3.15 meV and Tc = 4.61 K, consistent with experimental measurements and indicative of its classification as a BCS superconductor. The band structure analysis revealed the presence of Dirac-like band crossing points. The topological non-trivial electronic structures of the 1T-RhSeTe are confirmed via the evolution of Wannier charge centers (WCCs) and time-reversal symmetry-protected topological surface states (TSSs). These distinctive properties underscore 1T-RhSeTe as a possible candidate for a topological superconductor, warranting further investigation into its potential implications and applications.
Keywords:  superconductivity      topological electronic state      transition metal dichalcogenides  
Received:  14 October 2024      Revised:  26 December 2024      Accepted manuscript online:  31 December 2024
PACS:  74.70.-b (Superconducting materials other than cuprates)  
  63.20.kd (Phonon-electron interactions)  
  73.20.At (Surface states, band structure, electron density of states)  
  74.62.Dh (Effects of crystal defects, doping and substitution)  
  71.15.Mb (Density functional theory, local density approximation, gradient and other corrections)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 12204400), Science Research Project of Hebei Education Department (Grant No. QN2022169), the Natural Science Foundation of Hebei Province (Grant Nos. A2022203010 and A2024203011), Innovation Capability Improvement Project of Hebei Province (Grant No. 22567605H).
Corresponding Authors:  Dao-Xin Yao, Jun Li     E-mail:  yaodaox@mail.sysu.edu.cn;ljcj007@ysu.edu.cn

Cite this article: 

Tengdong Zhang(张腾东), Rui Fan(樊睿), Yan Gao(高炎), Yanling Wu(吴艳玲), Xiaodan Xu(徐晓丹), Dao-Xin Yao(姚道新), and Jun Li(李军) Possible coexistence of superconductivity and topological electronic states in 1T-RhSeTe 2025 Chin. Phys. B 34 027403

[1] Di Sante D, Das P K, Bigi C, Ergonenc Z, Gurtler N, Krieger J A, Schmitt T, Ali M N, Rossi G, Thomale R, Franchini C, Picozzi S, Fujii J, Strocov V N, Sangiovanni G, Vobornik I, Cava R J and Panaccione G 2017 Phys. Rev. Lett. 119 026403
[2] Wu S, Fatemi V, Gibson Q D, Watanabe K, Taniguchi T, Cava R J and Jarillo-Herrero P 2018 Science 359 76
[3] Costanzo D, Jo S, Berger H and Morpurgo A F 2016 Nat. Nanotechnol. 11 339
[4] Fang Y, Pan J, He J, Luo R, Wang D, Che X, Bu K, Zhao W, Liu P, Mu G, Zhang H, Lin T and Huang F 2018 Angewandte Chemie International Edition 57 1232
[5] Bruyer E, Di Sante D, Barone P, Stroppa A, Whangbo M H and Picozzi S 2016 Phys. Rev. B 94 195402
[6] Strachan J, Masters A F and Maschmeyer T 2021 ACS Applied Energy Materials 4 7405
[7] Lian C S, Si C and Duan W 2020 Nano Lett. 21 709
[8] He W Y, Zhou B T, He J J, Yuan N F Q, Zhang T and Law K T 2018 Commun. Phys. 1 1
[9] Zhao C X, Liu J N, Li B Q, Ren D, Chen X, Yu J and Zhang Q 2020 Adv. Funct. Mater. 30 2003619
[10] Kusmartseva A F, Sipos B, Berger H, Forro L and Tutis E 2009 Phys. Rev. Lett. 103 236401
[11] Xiao R C, Gong P L, Wu Q S, Lu W J, Wei M J, Li J Y, Lv H Y, Luo X, Tong P, Zhu X B and Sun Y P 2017 Phys. Rev. B 96 075101
[12] He Q L, Liu H, He M, Lai Y H, He H, Wang G, Law K T, Lortz R, Wang J and Sou I K 2014 Nat. Commun. 5 4247
[13] Ermolaev G, Voronin K, Baranov D G, Kravets V, Tselikov G, Stebunov Y, Yakubovsky D, Novikov S, Vyshnevyy A, Mazitov A, Kruglov I, Zhukov S, Romanov R, Markeev A M, Arsenin A, Novoselov K S, Grigorenko A N and Volkov V 2022 Nat. Commun. 13 2049
[14] Yan M, Huang H, Zhang K, Wang E, Yao W, Deng K, Wan G, Zhang H, Arita M, Yang H, Sun Z, Yao H, Wu Y, Fan S, Duan W and Zhou S 2017 Nat. Commun. 8 257
[15] Tanisha T T, Hossain M S, Hiramony N T, Rasul A, Hasan M Z and Khosru Q D M 2024 arXiv:2401.13124[cond-mat.mtrl-sci]
[16] Sato M and Ando Y 2017 Reports on Progress in Physics 80 076501
[17] Gu K Y, Luo T C, Ge J and Wang J 2020 Acta Phys. Sin. 69 020301(in Chinese)
[18] Nayak C, Simon S H, Stern A, Freedman M and Das Sarma S 2008 Rev. Mod. Phys. 80 1083
[19] Sarma S D, Freedman M and Nayak C 2015 npj Quantum Information 1 1
[20] Liu C C, Lu C, Zhang L D, Wu X, Fang C and Yang F 2020 Phys. Rev. Res. 2 033050
[21] Fidkowski L 2010 Phys. Rev. Lett. 104 130502
[22] Qi X L and Zhang S C 2011 Rev. Mod. Phys. 83 1057
[23] Patra C, Agarwal T, Arushi, Manna P, Bhatt N, Singh R S and Singh R P 2023 arXiv:2311.01019[cond-mat.supr-con]
[24] Geller S 1955 J. Am. Chem. Soc. 77 2641
[25] Lurgo F E, Pomiro F, Carbonio R E and Sanchez R D 2022 Phys. Rev. B 105 104104
[26] Kresse G and Hafner J 1993 Phys. Rev. B 47 558
[27] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[28] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758
[29] Klimes J, Bowler D R and Michaelides A 2009 J. Phys.:Condens. Matter 22 022201
[30] Giannozzi P, Andreussi O, Brumme T, et al. 2017 J. Phys.:Condens. Matter 29 465901
[31] Mostofi A A, Yates J R, Pizzi G, Lee Y S, Souza I, Vanderbilt D and Marzari N 2014 Computer Physics Communications 185 2309
[32] Mostofi A A, Yates J R, Lee Y S, Souza I, Vanderbilt D and Marzari N 2008 Computer Physics Communications 178 685
[33] Ponce S, Margine E R, Verdi C and Giustino F 2016 Computer Physics Communications 209 116
[34] Allen P B 1972 Phys. Rev. B 6 2577
[35] Allen P B and Dynes R C 1975 Phys. Rev. B 12 905
[36] Wu Q, Zhang S, Song H F, Troyer M and Soluyanov A A 2018 Computer Physics Communications 224 405
[37] Yu R, Qi X L, Bernevig A, Fang Z and Dai X 2011 Phys. Rev. B 84 075119
[38] Kane C L and Mele E J 2005 Phys. Rev. Lett. 95 146802
[39] Soluyanov A A and Vanderbilt D 2011 Phys. Rev. B 83 035108
[40] Chen W, Shen T, Feng Y, Liu C, Liu X and Wu Y 2023 Physica Scripta 98 105531
[41] Akiba K and Kobayashi T C 2023 Phys. Rev. B 107 245117
[42] Fu L and Kane C L 2008 Phys. Rev. Lett. 100 096407
[43] Li X D, Yu Z D, Chen W P and Gong C D 2022 Chin. Phys. B 31 110304
[44] Zhu Z L, Liu Z L, Wu X, Li X Y, Shi J A, Liu C, Qian G J, Zheng Q, Huang L, Lin X, Wang J O, Chen H, Zhou W, Sun J T, Wang Y L and Gao H J 2022 Chin. Phys. B 31 077101
[45] Wang Z, Dong H, Zhou W, Cheng Z and Wang S 2023 Chin. Phys. B 32 067103
[1] Phonon-mediated superconductivity in orthorhombic XS (X = Nb, Ta or W)
Guo-Hua Liu(刘国华), Kai-Yue Jiang(江恺悦), Yi Wan(万一), Shu-Xiang Qiao(乔树祥), Jin-Han Tan(谭锦函), Na Jiao(焦娜), Ping Zhang(张平), and Hong-Yan Lu(路洪艳). Chin. Phys. B, 2025, 34(2): 027401.
[2] Phase changings in the surface layers of Td-WTe2 driven by alkali-metal deposition
Yu Zhu(朱玉), Zheng-Guo Wang(王政国), Yu-Jing Ren(任宇靖), Peng-Hao Yuan(袁鹏浩), Jing-Zhi Chen(陈景芝), Yi Ou(欧仪), Li-Li Meng(孟丽丽), and Yan Zhang(张焱). Chin. Phys. B, 2025, 34(1): 017302.
[3] Intermediately coupled type-II superconductivity in a La-based kagome metal La3Al
Yingpeng Yu(于英鹏), Zhaolong Liu(刘兆龙), Zhaoxu Chen(陈昭旭), Qi Li(李琦), Yulong Wang(王玉龙), Xuhui Wang(王旭辉), Chunsheng Gong(龚春生), Zhaotong Zhuang(庄照通), Bin-Bin Ruan(阮彬彬), Huifen Ren(任会芬), Peijie Sun(孙培杰), Jian-Gang Guo(郭建刚), and Shifeng Jin(金士锋). Chin. Phys. B, 2025, 34(1): 017401.
[4] Chiral phonons of honeycomb-type bilayer Wigner crystals
Dingrui Yang(杨丁睿), Lingyi Li(李令仪), Na Zhang(张娜), and Hongyi Yu(俞弘毅). Chin. Phys. B, 2025, 34(1): 017301.
[5] Probing nickelate superconductors at atomic scale: A STEM review
Yihan Lei(雷一涵), Yanghe Wang(王扬河), Jiahao Song(宋家豪), Jinxin Ge(葛锦昕), Dirui Wu(伍迪睿), Yingli Zhang(张英利), and Changjian Li(黎长建). Chin. Phys. B, 2024, 33(9): 096801.
[6] Lewis acid-doped transition metal dichalcogenides for ultraviolet-visible photodetectors
Heng Yang(杨恒), Mingjun Ma(马明军), Yongfeng Pei(裴永峰), Yufan Kang(康雨凡), Jialu Yan(延嘉璐), Dong He(贺栋), Changzhong Jiang(蒋昌忠), Wenqing Li(李文庆), and Xiangheng Xiao(肖湘衡). Chin. Phys. B, 2024, 33(9): 098501.
[7] First-principles study on stability and superconductivity of ternary hydride LaYHx (x =2, 3, 6 and 8)
Xiao-Zhen Yan(颜小珍), Xing-Zi Zhou(周幸姿), Chao-Fei Liu(刘超飞), Yin-Li Xu(徐寅力), Yi-Bin Huang(黄毅斌), Xiao-Wei Sheng(盛晓伟), and Yang-Mei Chen(陈杨梅). Chin. Phys. B, 2024, 33(8): 086301.
[8] Manipulation of band gap in 1T-TiSe2 via rubidium deposition
Yi Ou(欧仪), Lei Chen(陈磊), Zi-Ming Xin(信子鸣), Yu-Jing Ren(任宇靖), Peng-Hao Yuan(袁鹏浩), Zheng-Guo Wang(王政国), Yu Zhu(朱玉), Jing-Zhi Chen(陈景芝), and Yan Zhang(张焱). Chin. Phys. B, 2024, 33(8): 087401.
[9] Observation of parabolic electron bands on superconductor LaRu2As2
Xingtai Zhou(周兴泰), Geng Li(李更), Lulu Pan(潘禄禄), Zichao Chen(陈子超), Meng Li(李萌), Yanhao Shi(时延昊), Haitao Yang(杨海涛), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2024, 33(7): 077401.
[10] Unveiling the pressure-driven metal-semiconductor-metal transition in the doped TiS2
Jiajun Chen(陈佳骏), Xindeng Lv(吕心邓), Simin Li(李思敏), Yaqian Dan(但雅倩), Yanping Huang(黄艳萍), and Tian Cui(崔田). Chin. Phys. B, 2024, 33(6): 067104.
[11] Superconductivity in kagome metal ThRu3Si2
Yi Liu(刘艺), Jing Li(厉静), Wu-Zhang Yang(杨武璋), Jia-Yi Lu(卢佳依), Bo-Ya Cao(曹博雅), Hua-Xun Li(李华旬), Wan-Li Chai(柴万力), Si-Qi Wu(武思祺), Bai-Zhuo Li(李佰卓), Yun-Lei Sun(孙云蕾), Wen-He Jiao(焦文鹤), Cao Wang(王操), Xiao-Feng Xu(许晓峰), Zhi Ren(任之), and Guang-Han Cao(曹光旱). Chin. Phys. B, 2024, 33(5): 057401.
[12] Structure and superconducting properties of Ru1-xMox (x = 0.1—0.9) alloys
Yang Fu(付阳), Chunsheng Gong(龚春生), Zhijun Tu(涂志俊), Shangjie Tian(田尚杰), Shouguo Wang(王守国), and Hechang Lei(雷和畅). Chin. Phys. B, 2024, 33(4): 047404.
[13] Robust Tc in element molybdenum up to 160 GPa
Xinyue Wu(吴新月), Shumin Guo(郭淑敏), Jianning Guo(郭鉴宁), Su Chen(陈诉), Yulong Wang(王煜龙), Kexin Zhang(张可欣), Chengcheng Zhu(朱程程), Chenchen Liu(刘晨晨), Xiaoli Huang(黄晓丽), Defang Duan(段德芳), and Tian Cui(崔田). Chin. Phys. B, 2024, 33(4): 047406.
[14] Spin-polarized pairing induced by the magnetic field in the Bernal bilayer graphene
Yan Huang(黄妍) and Tao Zhou(周涛). Chin. Phys. B, 2024, 33(4): 047403.
[15] Coexistence of antiferromagnetism and unconventional superconductivity in a quasi-one-dimensional flat-band system: Creutz lattice
Feng Xu(徐峰) and Lei Zhang(张磊). Chin. Phys. B, 2024, 33(3): 037402.
No Suggested Reading articles found!