Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(11): 114202    DOI: 10.1088/1674-1056/ad71b5
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev  

Manganese dioxide as wide adaptive ultrafast photonic device for pulsed laser generation

Xin-He Dou(窦鑫河)1, Zhen Chen(陈震)1, Chen-Yan Zhang(张辰妍)1, Xiang Li(李响)1, Fei-Hong Qiao(乔飞鸿)1, Bo-Le Song(宋博乐)1, Shan Wang(王珊)1, Hao Teng(滕浩)2,†, and Zhi-Guo Lv(吕志国)1,‡
1 School of Physical Science and Technology, Inner Mongolia University, Hohhot 010021, China;
2 Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
Abstract  Research on novel ultrafast photonic devices with wide adaptability has become important scientific technical means to realize both scheme innovation and performance breakthrough in fiber laser generation. As types of transition metal oxide, manganese dioxide (MnO$_{2}$) materials exhibit remarkable properties including high photothermal stability, strong oxidation resistance, and excellent optical properties, making them promising candidate for utilization as modulation devices in nonlinear optics and ultrafast optics fields. We investigate the impact of MnO$_{2}$-based saturable absorber (SA) on the pulse characteristics. The experiment reveals that MnO$_{2}$-based SA supports effectively pulsed laser generation in wide pump power range and large dispersion parameter space with signal-to-noise ratio more than 85 dB. As far as we know, the pump power response range is outstanding among the most of the reported pulsed lasers, which is attributed to the large modulation depth of MnO$_{2}$ SA. We also investigate the impact of dispersion on the characteristics of laser output, which is not involved in other similar works. This research indicates that MnO$_{2}$ as a photonic device has vast potential in advanced ultrafast optics.
Keywords:  MnO$_{2}$      saturable absorber      large modulation depth      $Q$-switching      mode-locking  
Received:  19 July 2024      Revised:  20 August 2024      Accepted manuscript online:  21 August 2024
PACS:  42.55.Wd (Fiber lasers)  
  42.60.-v (Laser optical systems: design and operation)  
  42.60.Fc (Modulation, tuning, and mode locking)  
  42.60.Gd (Q-switching)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 12164030), Young Science and Technology Talents of Inner Mongolia (Grant No. NJYT22101), and the Central Government Guides Local Science and Technology Development Fund Projects (Grant No. 2023ZY0005).
Corresponding Authors:  Hao Teng, Zhi-Guo Lv     E-mail:  hteng@iphy.ac.cn;lvzhiguo@imu.edu.cn

Cite this article: 

Xin-He Dou(窦鑫河), Zhen Chen(陈震), Chen-Yan Zhang(张辰妍), Xiang Li(李响), Fei-Hong Qiao(乔飞鸿), Bo-Le Song(宋博乐), Shan Wang(王珊), Hao Teng(滕浩), and Zhi-Guo Lv(吕志国) Manganese dioxide as wide adaptive ultrafast photonic device for pulsed laser generation 2024 Chin. Phys. B 33 114202

[1] Li L, Xue Z, Pang L H, Xiao X S, Yang H R, Zhang J N, Zhang Y M, Zhao Q Y and Liu W J 2024 Opt. Lett. 49 1293
[2] Li L, Cheng J W, Zhao Q Y, Zhang J N, Yang H R, Zhang Y M, Hui Z Q, Zhao F and Liu W J 2023 Opt. Express 31 16872
[3] Cui W W, Xing X W, Chen Y Q, Xiao Y J, Ye H and Liu W J 2023 Chin. Phys. Lett. 10 024201
[4] Xiao Y J, Xing X W, Cui W W, Chen Y Q, Zhou Q and Liu W J 2023 Chin. Phys. Lett. 40 054201
[5] Wang H Y, Xiao Y J, Liu Q, Xing X W, Yang H J and Liu W J 2023 Chin. Phys. Lett. 40 114204
[6] Meng X C, Li L, Sun N Z, Xue Z, Liu Q, Ye H and Liu W J 2023 Chin. Phys. Lett. 40 124202
[7] Wang M X, Li P X, Xu Y T, Zhu Y C, Li S and Yao C F 2022 Chin. Phys. Lett. 39 024201
[8] Shen J P, Huang X, Jiang S T, Jiang R R, Wang H Y, Lu P, Xu S C and Jiao M Y 2022 Chin. Phys. Lett. 39 104201
[9] Lang Y, Peng Z Y and Zhao Z X 2022 Chin. Phys. Lett. 39 114201
[10] Zhu G Y, Tian M F, Almokhtar M, Qin F F, Li B H, Zhou M Y, Gao F, Yang Y, Ji X, He S Q and Wang Y J 2022 Chin. Phys. Lett. 39 123401
[11] Ma Y, Li W J, Xu Y F, Liu J Q, Zhuo N, Yang K, Zhang J C, Zhai S Q, Liu S M, Wang L J and Liu F Q 2023 Chin. Phys. Lett. 40 014201
[12] Huang K W, Wang X, Qiu Q Y, Wu L and Xiong H 2023 Chin. Phys. Lett. 40 104201
[13] Zhang X, Yi H H, Yao Y L, Wang S B and Shi L X 2023 Chin. Phys. Lett. 40 124204
[14] Yi Q, Yang L L, Yang K, Li J, Du L, Huang B, Miao L L and Zhao C J 2021 Opt. Express 29 41388
[15] Han Y, Gao B, Wen H, Ma C, Huo J, Li Y, Zhou L, Li Q, Wu G and Liu L 2024 Light Sci. Appl. 13 101
[16] Han Y H, Li X H, Chen E C, An M Q, Song Z Y, Huang X Z, Liu X F, Wang Y S and Zhao W 2022 Adv. Opt. Mater. 10 2201034
[17] Li L R, Li X H, Zhao Y, Feng J J, Zhang C X, Zhang Y, Shi Y, Ge Y Q and Zhang Y N 2022 Nanotechnology 33 065203
[18] Han Y, Guo Y, Gao B, Ma C, Zhang R and Zhang H 2020 Prog. Quantum Electron. 71 100264
[19] Bao Q L, Zhang H, Wang Y, Ni Z H, Yan Y L, Shen Z X, Loh K P and Tang D Y 2009 Adv. Funct. Mater. 19 3077
[20] Zhao C, Zhang H, Qi X, Chen Y, Wang Z, Wen S and Tang D 2012 Appl. Phys. Lett. 101 211106
[21] Sun Z H, Jiang X T, Wen Q, Li W J and Zhang H 2019 J. Mater. Chem. C 7 4662
[22] Li P F, Chen Y, Yang T S, Wang Z Y, Lin H, Xu Y H and Li L 2017 ACS Appl. Mater. Interfaces 9 12759
[23] Jiang X T, Li W J, Hai T, Yue R, Chen Z W, Lao C S, Ge Y Q, Xie G Q, Wen Q and Zhang H 2019 npj 2D Mater. Appl. 3 34
[24] Wang S, Yu H, Zhang H, Wang A, Zhao M, Chen Y, Mei L and Wang J 2014 Adv. Mater. 26 3538
[25] Mao D, Cui X Q, Zhang W D, Li M K, Feng T X, Du B B, Lu H and Zhao J L 2017 Photon. Res. 5 52
[26] Pinky Y, Ayana B and Atul T 2023 Chembioeng Rev. 10 510
[27] Li X H, Huang X Z, Han Y H, et al. 2023 Ultrafast Sci. 3 0006
[28] Magnard N P L, Kirsch A, Jorgensen M R V, Kantor I, Sorensen D R and Huotari S 2023 Inorg. Chem. 62 13021
[29] Wang Y H and Lv Y K 2016 RSC Adv. 6 54032
[30] Cheng G, Yu L, Lin T, Yang R N, Sun M, Lan B, Yang L L and Deng F Z 2014 J. Solid State Chem. 217 57
[31] Tang H, Chen W H, Li N, Hu Z L, Xiao L, Xie Y J, Xi L J, Ni L and Zhu Y R 2022 Energy Storage Mater. 48 335
[32] Gu Y D, Min Y X, Li L, Lian Y B, Sun H, Wang D, Rummeli M H, Guo J, Zhong J, Xu L, Peng Y and Deng Z 2021 Chem. Mater. 33 4135
[33] Yang R J, Guo Z J, Cai L X, et al. 2021 Small 17 2170265
[34] Tao M M, Ye X S, Wang Z B, Wu Y, Wang P, Yang P L and Feng G B 2014 Opt. Commun. 319 128
[35] Wang J Z, Luo Z Q, Zhou M, Ye C C, Fu H Y, Cai Z P, Cheng H Y, Xu H Y and Qi W 2012 IEEE Photon. J. 4 1295
[36] Chen Y, Jiang G B, Chen S Q, Guo Z N, Yu X F, Zhao C J, Zhang H, Bao Q L, Wen S C, Tang D Y and Fan D Y 2015 Opt. Express 23 12823
[37] Luo Z C, Wang F Z, Liu H, Liu M, Tang R, Luo A P and Xu W C 2016 Opt. Eng. 55 081308
[38] Ping K, Cheng C, Tang T Y, Xin Y, Wang L H, Zeng Y and Hong T 2020 Photon. Res. 8 511
[39] Zhang M, Hu G H, Hu G Q, Howe R C T, Chen L, Zheng Z and Hasan T 2015 Sci. Rep. 5 17482
[40] Ahmad H, Aidit S N and Yusoff N 2018 Infrared Phys. Technol. 95 19
[41] Nady A, Ahmed M H M, Numan A, Ramesh S, Latiff A A, Ooi C H R, Arof H and Harun S W 2017 J. Mod. Opt. 64 1315
[42] Nady A, Ahmed M H M, Latiff A A, Numan A, Ooi C H R and Harun S W 2017 Laser Phys. 27 065105
[43] Zhang L Y and Wang F 2023 Opt. Fiber Technol. 80
[44] Reddy P H, Rahman M F A, Paul M C, et al. 2018 Optik 158 1327
[45] Aziz N A, Latiff A A, Lokman M Q, Hanafi E and Harun S W 2017 Chin. Phys. Lett. 34 044202
[46] Chang Y M, Kim H, Lee J H and Song Y W 2010 Appl. Phys. Lett. 97 211102
[47] Zhou Y, Lin J, Zhang X Q, Xu L X, Gu C, Sun B, Wang A T and Zhan Q W 2016 Photon. Res. 4 327
[48] Ahmed N, Omar S, Jusoh Z, Rahman H A, Dimyati K, Apsari R and Harun S W 2023 Microw. Opt. Technol. Let. 65 365
[49] Khazaeizhad R, Kassani S H, Jeong H, Yeom D I and Oh K 2014 Opt. Express 22 23732
[50] Long H, Tang C Y, Cheng P K, Wang X Y, Qarony W and Tsang Y H 2019 J. Lightwave Technol. 37 1174
[51] Hu Q Y, Yang K J, Li M, Li P, Zhao H X, Zhang B, Liu J, Yang Y M and Chen X H 2023 Nanotechnology 34 365203
[52] He X Y, Liu Z B, Wang D N, Yang M W, Liao C R and Zhao X 2012 J. Lightwave Technol. 30 984
[53] Nady A, Baharom M F, Latiff A A and Harun S W 2018 Chin. Phys. Lett. 35 044204
[1] Broadband third-order optical nonlinearities of layered franckeite towards mid-infrared regime
Zhi-Qiang Xu(徐志强), Tian-Tian Zhou(周甜甜), Jie Li(李洁), Dong-Yang Liu(刘东阳), Yuan He(何源), Ning Li(李宁), Xiao Liu(刘潇), Li-Li Miao(缪丽丽), Chu-Jun Zhao(赵楚军), and Shuang-Chun Wen(文双春). Chin. Phys. B, 2024, 33(10): 104208.
[2] Single-frequency linearly polarized Q-switched fiber laser based on Nb2GeTe4 saturable absorber
Si-Yu Chen(陈思雨), Hai-Qin Deng(邓海芹), Wan-Ru Zhang(张万儒), Yong-Ping Dai(戴永平), Tao Wang(王涛), Qiang Yu(俞强), Can Li(李灿), Man Jiang(姜曼), Rong-Tao Su(粟荣涛), Jian Wu(吴坚), and Pu Zhou(周朴). Chin. Phys. B, 2023, 32(7): 074203.
[3] A 54-fs diode-pumped Kerr-lens mode-locked Yb:LuYSiO5laser
Yang Yu(于洋), Yuehang Chen(陈月航), Wenlong Tian(田文龙), Li Zheng(郑立), Geyang Wang(王阁阳), Chuan Bai(白川), Xuan Tian(田轩), Haijing Mai(麦海静), Yulong Su(苏玉龙), Jiangfeng Zhu(朱江峰), and Zhiyi Wei(魏志义). Chin. Phys. B, 2023, 32(6): 064204.
[4] Antimonene-based saturable absorber for a soliton mode-locked and Q-switched fiber laser in the 2 μm wavelength region
H Ahmad, B Nizamani, M Z Samion, N Yusoff, and M F Ismail. Chin. Phys. B, 2023, 32(6): 064205.
[5] Sequential generation of self-starting diverse operations in all-fiber laser based on thulium-doped fiber saturable absorber
Pei Zhang(张沛), Kaharudin Dimyati, Bilal Nizamani, Mustafa M. Najm, and S. W. Harun. Chin. Phys. B, 2022, 31(6): 064204.
[6] All-fiber erbium-doped dissipative soliton laser with multimode interference based on saturable-reserve saturable hybrid optical switch
Xin Zhao(赵鑫), Renyan Wan(王仁严), Weiyan Li(李卫岩), Liang Jin(金亮), He Zhang(张贺), Yan Li(李岩), Yingtian Xu(徐英添), Linlin Shi(石琳琳), and Xiaohui Ma(马晓辉). Chin. Phys. B, 2022, 31(6): 064215.
[7] Yb:CaF2–YF3 transparent ceramics ultrafast laser at dual gain lines
Xiao-Qin Liu(刘晓琴), Qian-Qian Hao(郝倩倩), Jie Liu(刘杰), Dan-Hua Liu(刘丹华), Wei-Wei Li(李威威), and Liang-Bi Su(苏良碧). Chin. Phys. B, 2022, 31(11): 114205.
[8] Zinc-oxide/PDMS-clad tapered fiber saturable absorber for passively mode-locked erbium-doped fiber laser
F D Muhammad, S A S Husin, E K Ng, K Y Lau, C A C Abdullah, and M A Mahdi. Chin. Phys. B, 2021, 30(5): 054204.
[9] Generation of wideband tunable femtosecond laser based on nonlinear propagation of power-scaled mode-locked femtosecond laser pulses in photonic crystal fiber
Zhiguo Lv(吕志国) and Hao Teng(滕浩). Chin. Phys. B, 2021, 30(4): 044209.
[10] Pulse generation in Yb-doped polarization-maintaining fiber laser by nonlinear polarization evolution
Cheng-Bin Liang(梁成斌), Yan-Rong Song(宋晏蓉), Zi-Kai Dong(董自凯), Yun-Feng Wu(吴云峰), Jin-Rong Tian(田金荣), Run-Qin Xu(徐润亲). Chin. Phys. B, 2020, 29(7): 074206.
[11] 575-fs passively mode-locked Yb:CaF2 ceramic laser
Cong Wang(王聪), Qian-Qian Hao(郝倩倩), Wei-Wei Li(李威威), Hai-Jun Huang(黄海军), Shao-Zhao Wang(王绍钊), Da-Peng Jiang(姜大朋), Jie Liu(刘杰), Bing-Chu Mei(梅炳初), Liang-Bi Su(苏良碧). Chin. Phys. B, 2020, 29(7): 074205.
[12] Electron dynamics of active mode-locking terahertz quantum cascade laser
Qiushi Hou(侯秋实), Chang Wang(王长), and Juncheng Cao(曹俊诚). Chin. Phys. B, 2020, 29(12): 127302.
[13] CsPbBr3 nanocrystal for mode-locking Tm-doped fiber laser
Yan Zhou(周延), Renli Zhang(张仁栗), Xia Li(李夏), Peiwen Kuan(关珮雯), Dongyu He(贺冬钰), Jingshan Hou(侯京山), Yufeng Liu(刘玉峰), Yongzheng Fang(房永征), Meisong Liao(廖梅松). Chin. Phys. B, 2019, 28(9): 094203.
[14] Zinc-oxide nanoparticle-based saturable absorber deposited by simple evaporation technique for Q-switched fiber laser
Syarifah Aloyah Syed Husin, Farah Diana Muhammad, Che Azurahanim Che Abdullah, Siti Huzaimah Ribut, Mohd Zamani Zulkifli, Mohd Adzir Mahdi. Chin. Phys. B, 2019, 28(8): 084207.
[15] 7.6-W diode-pumped femtosecond Yb: KGW laser
Yan-Fang Cao(曹艳芳), Xiang-Hao Meng(孟祥昊), Jun-Li Wang(王军利), Zhao-Hua Wang(王兆华), Meng-Yao Cheng(程梦尧), Jiang-Feng Zhu(朱江峰), Zhi-Yi Wei(魏志义). Chin. Phys. B, 2019, 28(4): 044205.
No Suggested Reading articles found!