Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(11): 113701    DOI: 10.1088/1674-1056/ad71b3
ATOMIC AND MOLECULAR PHYSICS Prev  

Secondary electron yield of air-exposed ALD-Al2O3 coating on Ag-plated aluminum alloy

Xue-Man Wan(万雪曼), Tian-Cun Hu(胡天存), Jing Yang(杨晶), Na Zhang(张娜), Yun He(何鋆), and Wan-Zhao Cui(崔万照)†
National Key Laboratory of Science and Technology on Space Microwave, China Academy of Space Technology (Xi'an), Xi'an 710100, China
Abstract  Secondary electron yield (SEY) of air-exposed metals tends to be increased because of air-formed oxide, hydrocarbon, and other contaminants. This enhances the possibility of secondary electron multipacting in high-power microwave systems, resulting in undesirable occurrence of discharge damage. Al$_{2}$O$_{3}$ coatings have been utilized as passive and protective layers on device packages to provide good environmental stability. We employed atomic layer deposition (ALD) to produce a series of uniform Al$_{2}$O$_{3}$ coatings with appropriate thickness on Ag-plated aluminum alloy. The secondary electron emission characteristics and their variations during air exposure were observed. The escape depth of secondary electron needs to exceed the coating thickness to some extent in order to demonstrate SEY of metallic substrates. Based on experimental and calculated results, the maximum SEY of Ag-plated aluminum alloy had been maintained at 2.45 over 90 days of exposure without obvious degradation by applying 1 nm Al$_{2}$O$_{3}$ coatings. In comparison, the peak SEY of untreated Ag-plated aluminum alloy grew from an initial 2.33 to 2.53, exceeding that of the 1 nm Al$_{2}$O$_{3}$ sample. The ultra-thin ALD-Al$_{2}$O$_{3}$ coating substantially enhanced the SEY stability of metal materials, with good implications for the environmental dependability of spacecraft microwave components.
Keywords:  secondary electron yield (SEY)      atomic layer deposition      air exposure      multipactor  
Received:  03 June 2024      Revised:  19 August 2024      Accepted manuscript online:  21 August 2024
PACS:  37.20.+j (Atomic and molecular beam sources and techniques)  
  79.20.Hx (Electron impact: secondary emission)  
  68.37.-d (Microscopy of surfaces, interfaces, and thin films)  
Fund: Project supported by the Sustainedly Supported Foundation by National Key Laboratory of Science and Technology on Space Microwave (Grant No. HTKJ2023KL504001) and the National Natural Science Foundation of China (Grant No. 62101434).
Corresponding Authors:  Wan-Zhao Cui     E-mail:  cuiwanzhao@126.com

Cite this article: 

Xue-Man Wan(万雪曼), Tian-Cun Hu(胡天存), Jing Yang(杨晶), Na Zhang(张娜), Yun He(何鋆), and Wan-Zhao Cui(崔万照) Secondary electron yield of air-exposed ALD-Al2O3 coating on Ag-plated aluminum alloy 2024 Chin. Phys. B 33 113701

[1] Kang Y F, Li B, Zhao J Y, Ge B Z, Weng M, Shi Z Q and Zhao Y Q 2020 Vacuum 172 109043
[2] Greenblatt M H 1949 Rev. Sci. Instrum. 20 646
[3] Powell C J and Seah M P 1990 J. Vac. Sci. Technol. A 8 735
[4] Wiza J L 1979 Nucl. Instrum. Meth. 162 587
[5] Jokela S J, Veryovkin I V, Zinovev A V, Elam J W, Peng, Q, Mane A U, McDaniel F D and Doyle B L 2011 AIP Conf. Proc. 1336 208
[6] Bishop H E and Riviere J C 1969 J. Appl. Phys. 40 1740
[7] Seiler H 1983 J. Appl. Phys. 54 R1
[8] Hueso J, Raboso D, Schmitt D, Boria V E, Martinez B and Vicente C 2011 IEEE Tran. Electron. Dev. 58 3205
[9] Zhang Y T, Yang J, Yang Z L, Miao G H, Zhang N and Cui W Z 2024 Rare Metal Mat. Eng. 53 465 (in Chinese)
[10] Song Q, Cui W Z, Yang J and Hu T C 2019 Chin. Space Sci. Technol. 39 43 (in Chinese)
[11] Zhang N, Cui W Z and Wang X B 2011 Space Electronic Technol. 8 38 (in Chinese)
[12] Nistor V, González L A, Aguilera L, Montero I, Galán L, Wochner U and Raboso D 2014 Appl. Surf. Sci. 315 445
[13] Tao S X, Chan H W and Van D G H 2016 Materials 9 1017
[14] Sattler J M, Coutu R A, Lake R, Laurvick T, Back T and Fairchild S 2017 J. Appl. Phys. 122 055304
[15] Jin X L, Ji P, Zhuge L J, Wu X M and Jin C G 2022 Chin. Phys. B 31 27901
[16] Wang F, Zhao Q, Li J, Wang K, Huang Z and Cui W 2018 Coatings 8 249
[17] Feng G B, Li Y, Li X J, Xie G B and Liu L 2022 Chin. Phys. B 31 107901
[18] He Y, Shen T, Wang Q, Miao G H, Bai C J, Yu B, Yang J, Feng G B, Hu T C, Wang X B and Cui W Z 2020 Appl. Surf. Sci. 520 146320
[19] Wang J, Taaj S, Valizadeh R, Wang Y and Wang S 2018 IEEE Trans. Nucl. Sci. 65 2620
[20] Wang D, Cai Y H, He Y, Xu Y N and Jia Q Q 2022 Res. Phys. 33 105231
[21] Gineste T, Belhaj M, Teyssedre G and Puech J 2015 Appl. Surf. Sci. 359 398
[22] Hu T, Zhu S, Zhao Y, Sun X, Yang J, He Y, Wang X, Bai C, Bai H and Wei H 2022 Chin. Phys. B 31 047901
[23] Parsons G N, George S M and Knez M 2011 MRS Bull. 36 865
[24] Gougousi T 2016 Prog. Cryst. Growth Charact. 62 1
[25] Xie G, Bai H, Miao G H, Feng G B, Yang J, He Y, Li X J and Li Y 2021 Nanomaterials 11 3282
[26] Wang Y, Yan B, Wen K, Liu S, Qi M, Zhang B, Gu J and Yao W 2021 Nanoscale Res. Lett. 16 1
[27] Lian Z, Zhu X, Wang D, Meng X and He Y 2024 J. Phys. D: Appl. Phys. 57 125302
[28] Burton B B, Lavoie A R and George S M 2008 J. Electrochem. Soc. 155 D508
[29] Feng Z, Wang Y, Hao J, Jing M, Lu F, Wang W, Cheng Y, Wang S, Liu H and Dong H 2022 Chin. Phys. B 31 057701
[30] Yang H, Chen W, Li M Y, Xiong F, Wang G, Zhang S, Deng C Y, Peng G and Qin Q S 2020 Chin. Phys. Lett. 37 076801
[31] Young J R 1956 J. Appl. Phys. 27 14
[32] Dionne G F 1975 J. Appl. Phys. 46 3347
[33] Chan H W, Prodanović V, Theulings A, Hagen C W, Sarro P M and Graaf H V D 2021 J. Instrum. 16 P07024
[34] Cao W, Wang B, Yang Y, Zhu B, Guo J, Xu P, Bai X, Qin J, Wang C, Zhu J and Bai Y 2021 Ceram. Int. 47 9866
[35] Guo J J, Wang D, Xu Y T, Zhu X P, Wen K L, Miao G H, Cao W W, Si J H, Lu M and Guo H T 2019 AIP Adv. 9 095303
[36] Wei W, Yan B, Heng Y, Liu S, Zhang B, Peng H, Wang Y and Wen K 2023 J. Instrum. 18 P02002
[37] Yang Z, Wang X, Chen Z, Wang R and Cui W Z 2024 Space Sci. Technol. 4 0108
[1] Glancing incidence x-ray fluorescence spectrometry based on a single-bounce parabolic capillary
Shangkun Shao(邵尚坤), Huiquan Li(李惠泉), Tianyu Yuan(袁天语), Xuepeng Sun(孙学鹏), Lu Hua(华路), Zhiguo Liu(刘志国), and Tianxi Sun(孙天希). Chin. Phys. B, 2023, 32(8): 080702.
[2] Physical analysis of normally-off ALD Al2O3/GaN MOSFET with different substrates using self-terminating thermal oxidation-assisted wet etching technique
Cheng-Yu Huang(黄成玉), Jin-Yan Wang(王金延), Bin Zhang(张斌), Zhen Fu(付振), Fang Liu(刘芳), Mao-Jun Wang(王茂俊), Meng-Jun Li(李梦军), Xin Wang(王鑫), Chen Wang(汪晨), Jia-Yin He(何佳音), and Yan-Dong He(何燕冬). Chin. Phys. B, 2022, 31(9): 097401.
[3] Designing high k dielectric films with LiPON—Al2O3 hybrid structure by atomic layer deposition
Ze Feng(冯泽), Yitong Wang(王一同), Jilong Hao(郝继龙), Meiyi Jing(井美艺), Feng Lu(卢峰), Weihua Wang(王维华), Yahui Cheng(程雅慧), Shengkai Wang(王盛凯), Hui Liu(刘晖), and Hong Dong(董红). Chin. Phys. B, 2022, 31(5): 057701.
[4] Uniform light emission from electrically driven plasmonic grating using multilayer tunneling barriers
Xiao-Bo He(何小波), Hua-Tian Hu(胡华天), Ji-Bo Tang(唐继博), Guo-Zhen Zhang(张国桢), Xue Chen(陈雪), Jun-Jun Shi(石俊俊), Zhen-Wei Ou(欧振伟), Zhi-Feng Shi(史志锋), Shun-Ping Zhang(张顺平), Chang Liu(刘昌), and Hong-Xing Xu(徐红星). Chin. Phys. B, 2022, 31(1): 017803.
[5] Characterization and application in XRF of HfO2-coated glass monocapillary based on atomic layer deposition
Yan-Li Li(李艳丽), Ya-Bing Wang(王亚冰), Wei-Er Lu(卢维尔), Xiang-Dong Kong(孔祥东), Li Han(韩立), and Hui-Bin Zhao(赵慧斌). Chin. Phys. B, 2021, 30(5): 050703.
[6] Analysis of secondary electron emission using the fractal method
Chun-Jiang Bai(白春江), Tian-Cun Hu(胡天存), Yun He(何鋆), Guang-Hui Miao(苗光辉), Rui Wang(王瑞), Na Zhang(张娜), and Wan-Zhao Cui(崔万照). Chin. Phys. B, 2021, 30(1): 017901.
[7] Low-temperature plasma enhanced atomic layer deposition of large area HfS2 nanocrystal thin films
Ailing Chang(常爱玲), Yichen Mao(毛亦琛), Zhiwei Huang(黄志伟), Haiyang Hong(洪海洋), Jianfang Xu(徐剑芳), Wei Huang(黄巍), Songyan Chen(陈松岩), Cheng Li(李成). Chin. Phys. B, 2020, 29(3): 038102.
[8] Surface termination effects on the electrical characteristics of La2O3/Al2O3 nanolaminates deposited by atomic layer deposition
Ji-Bin Fan(樊继斌), Shan-Ya Ling(凌山雅), Hong-Xia Liu(刘红侠), Li Duan(段理), Yan Zhang(张研), Ting-Ting Guo(郭婷婷), Xing Wei(魏星), and Qing He(何清)$. Chin. Phys. B, 2020, 29(11): 117701.
[9] Effect of source temperature on phase and metal–insulator transition temperature of vanadium oxide films grown by atomic layer deposition
Bingheng Meng(孟兵恒), Dengkui Wang(王登魁)†, Deshuang Guo(郭德双), Juncheng Liu(刘俊成), Xuan Fang(方铉), Jilong Tang(唐吉龙), Fengyuan Lin(林逢源), Xinwei Wang(王新伟), Dan Fang(房丹), and Zhipeng Wei(魏志鹏)‡. Chin. Phys. B, 2020, 29(10): 107102.
[10] An improved secondary electrons energy spectrum model and its application in multipactor discharge
Wan-Zhao Cui(崔万照), Heng Zhang(张恒), Yun Li(李韵), Yun He(何鋆), Qi Wang(王琪), Hong-Tai Zhang(张洪太), Hong-Guang Wang(王洪广), Jing Yang(杨晶). Chin. Phys. B, 2018, 27(3): 038401.
[11] Crystalline silicon surface passivation investigated by thermal atomic-layer-deposited aluminum oxide
Cai-Xia Hou(侯彩霞), Xin-He Zheng(郑新和), Rui Jia(贾锐), Ke Tao(陶科), San-Jie Liu(刘三姐), Shuai Jiang(姜帅), Peng-Fei Zhang(张鹏飞), Heng-Chao Sun(孙恒超), Yong-Tao Li(李永涛). Chin. Phys. B, 2017, 26(9): 098103.
[12] Influences of different oxidants on characteristics of La2O3/Al2O3 nanolaminates deposited by atomic layer deposition
Ji-Bin Fan(樊继斌), Hong-Xia Liu(刘红侠), Li Duan(段理), Yan Zhang(张研), Xiao-Chen Yu(于晓晨). Chin. Phys. B, 2017, 26(6): 067701.
[13] Performance and reliability improvement of La2O3/Al2O3 nanolaminates using ultraviolet ozone post treatment
Ji-Bin Fan(樊继斌), Hong-Xia Liu(刘红侠), Bin Sun(孙斌), Li Duan(段理), Xiao-Chen Yu(于晓晨). Chin. Phys. B, 2017, 26(5): 057702.
[14] An efficient multipaction suppression method in microwave components for space application
Wan-Zhao Cui(崔万照), Yun Li(李韵), Jing Yang(杨晶), Tian-Cun Hu(胡天存), Xin-Bo Wang(王新波), Rui Wang(王瑞), Na Zhang(张娜), Hong-Tai Zhang(张洪太), Yong-Ning He(贺永宁). Chin. Phys. B, 2016, 25(6): 068401.
[15] Influences of different structures on the characteristics of H2O-based and O3-based LaxAlyO films deposited by atomic layer deposition
Chen-Xi Fei(费晨曦), Hong-Xia Liu(刘红侠), Xing Wang(汪星), Dong-Dong Zhao(赵冬冬), Shu-Long Wang(王树龙), Shu-Peng Chen(陈树鹏). Chin. Phys. B, 2016, 25(5): 058106.
No Suggested Reading articles found!