Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(6): 063302    DOI: 10.1088/1674-1056/24/6/063302
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

Ramsey-CPT spectrum with the Faraday effect and its application to atomic clocks

Tian Yuan (田原)a, Tan Bo-Zhong (谭伯仲)c, Yang Jing (杨晶)b, Zhang Yi (张奕)b, Gu Si-Hong (顾思洪)a b c
a School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China;
b Key Laboratory of Atomic Frequency Standards, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China;
c School of Physics, Huazhong University of Science and Technology, Wuhan 430074, China
Abstract  A method that obtains the Ramsey-coherent population trapping (CPT) spectrum with the Faraday effect is investigated. An experiment is implemented to detect the light polarization components generated from the Faraday effect. The experimental results agree with the theoretical calculations based on the Liouville equation. By comparing with the method without using the Faraday effect, the potential of this method for a CPT-based atomic clock is assessed. The results indicate that this method should improve the short-term frequency stability by several times.
Keywords:  Faraday effect      Ramsey-CPT      atomic clock      frequency stability  
Received:  07 January 2015      Revised:  30 January 2015      Accepted manuscript online: 
PACS:  33.57.+c (Magneto-optical and electro-optical spectra and effects)  
  78.20.Ls (Magneto-optical effects)  
  42.25.Hz (Interference)  
  32.30.Jc (Visible and ultraviolet spectra)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11304362 and 11204351).
Corresponding Authors:  Gu Si-Hong     E-mail:  shgu@wipm.ac.cn
About author:  33.57.+c; 78.20.Ls; 42.25.Hz; 32.30.Jc

Cite this article: 

Tian Yuan (田原), Tan Bo-Zhong (谭伯仲), Yang Jing (杨晶), Zhang Yi (张奕), Gu Si-Hong (顾思洪) Ramsey-CPT spectrum with the Faraday effect and its application to atomic clocks 2015 Chin. Phys. B 24 063302

[1] Vanier J 2005 Appl. Phys. B 81 421
[2] Kitching J, Knappe S, Liew L A, Schwindt P D D, Gerginov V, Shah V, Moreland V, Brannon A, Breitbarth J, Popovic Z and Hollberg L 2005 Proceedings of the ION GNSS 18th International Technical Meeting of the Satellite Division, September 13-16, 2005, Long Beach, USA, p. 1662
[3] Kitching J, Robinson H G, Hollberg L, Knappe S and Wynands R 2001 J. Opt. Soc. Am. B 18 1676
[4] Jau Y Y, Miron E, Post A B, Kuzma N N and Happer W 2004 Phys. Rev. Lett. 93 160802
[5] Zhang Y, Qu S P and Gu S H 2012 Opt. Express 20 6400
[6] Kargapoltsev S V, Kitching J, Hollberg L, Taichenachev A V, Velichansky V L and Yudin V I 2004 Laser Phys. Lett. 1 495
[7] Rosenbluh M, Shah V, Knappe S and Kitching J 2006 Opt. Express 14 6588
[8] Zanon T, Guerandel S, Clercq E D, Holleville D, Dimarcq N and Clairon A 2005 Phys. Rev. Lett. 94 193002
[9] Shah V, Knappe S, Hollberg L and Kitching J 2007 Opt. Lett. 32 1244
[10] Taichenachev A V, Yudin V I, Velichansky V L and Zibrov S A 2005 JETP Lett. 82 398
[11] Zibrov S A, Velichanskya V L, Zibrov S A, Taichenachev A V and Yudin V I 2005 JETP Lett. 82 477
[12] Tan B Z, Yun P, Yang J, Tian Y and Gu S H 2013 Appl. Phys. Lett. 102 161117
[13] Zhu M 2003 Proceedings of the IEEE Frequency Control Symposium and PDA Exhibition Jointly with the 17th European Frequency and Time Forum, May 4-8, 2003, Tampa, USA, p. 16
[14] Zhu M 2008 IEEE Trans. Instrum. Meas. 57 1357
[16] Danet J M, Lours M, Yun P, Guerandel S and Clercq E D 2014 Proceedings of the IEEE Frequency Control Symposium (FCS), May 19-22, 2014, Taibei, China, p. 586
[17] Chen X, Yang G Q, Wang J and Zhan M S 2010 Chin. Phys. Lett. 27 113201
[18] Yang J, Liu G B and Gu S H 2012 Acta Phys. Sin. 61 043202 (in Chinese)
[19] Yun P, Zhang Y, Liu G, Deng W, You L and Gu S H 2012 Europhys. Lett. 97 63004
[20] Yang J, Tian Y, Tan B Z, Yun P and Gu S H 2014 J. Appl. Phys. 115 093109
[21] Lin J, Deng J L, Ma Y S, He H J and Wang Y Z 2012 Opt. Lett. 37 5036
[22] Peng Y F, Tang J X and Wang Q J 1993 Chin. Phys. B 2 1
[23] She Y C, Zhang W X and Wang D L 2011 Acta Phys. Sin. 60 064205 (in Chinese)
[24] Breschi E and Mileti G 2009 Proceedings of the Joint Meeting of the European Time and Frequency Forum and the IEEE Frequnecy Control Symposium, April 20-24, 2009, Besancon, France, p. 559
[25] Vanier J and Bernier L G 1981 IEEE Trans. Instrum. Meas. 30 277
[1] Effective sideband cooling in an ytterbium optical lattice clock
Jin-Qi Wang(王进起), Ang Zhang(张昂), Cong-Cong Tian(田聪聪), Ni Yin(殷妮), Qiang Zhu(朱强), Bing Wang(王兵), Zhuan-Xian Xiong(熊转贤), Ling-Xiang He(贺凌翔), and Bao-Long Lv(吕宝龙). Chin. Phys. B, 2022, 31(9): 090601.
[2] High-performance coherent population trapping clock based on laser-cooled atoms
Xiaochi Liu(刘小赤), Ning Ru(茹宁), Junyi Duan(段俊毅), Peter Yun(云恩学), Minghao Yao(姚明昊), and Jifeng Qu(屈继峰). Chin. Phys. B, 2022, 31(4): 043201.
[3] Demonstration of Faraday anomalous dispersion optical filter with reflection configuration
Yi Liu(刘艺), Baodong Yang(杨保东), Junmin Wang(王军民), Wenyi Huang(黄文艺), Zhiyu Gou(缑芝玉), and Haitao Zhou(周海涛). Chin. Phys. B, 2022, 31(1): 017804.
[4] Calculations of dynamic multipolar polarizabilities of the Cd clock transition levels
Mi Zhou(周密) and Li-Yan Tang(唐丽艳). Chin. Phys. B, 2021, 30(8): 083102.
[5] Progress on the 40Ca+ ion optical clock
Baolin Zhang(张宝林), Yao Huang(黄垚), Huaqing Zhang(张华青), Yanmei Hao(郝艳梅), Mengyan Zeng(曾孟彦), Hua Guan(管桦), Kelin Gao(高克林). Chin. Phys. B, 2020, 29(7): 074209.
[6] Development of the integrated integrating sphere cold atom clock
Ming-Yuan Yu(于明圆), Yan-Ling Meng(孟艳玲), Mei-Feng Ye(叶美凤), Xin Wang(王鑫), Xin-Chuan Ouyang(欧阳鑫川), Jin-Yin Wan(万金银), Ling Xiao(肖玲), Hua-Dong Cheng(成华东), Liang Liu(刘亮). Chin. Phys. B, 2019, 28(7): 070602.
[7] Ramsey-coherent population trapping Cs atomic clock based on lin||lin optical pumping with dispersion detection
Peng-Fei Cheng(程鹏飞), Jian-Wei Zhang(张建伟), Li-Jun Wang(王力军). Chin. Phys. B, 2019, 28(7): 070601.
[8] Theoretical analysis of suppressing Dick effect in Ramsey-CPT atomic clock by interleaving lock
Xiao-Lin Sun(孙晓林), Jian-Wei Zhang(张建伟), Peng-Fei Cheng(程鹏飞), Ya-Ni Zuo(左娅妮), Li-Jun Wang(王力军). Chin. Phys. B, 2018, 27(2): 023101.
[9] Broad bandwidth interference filter-stabilized external cavity diode laser with narrow linewidth below 100 kHz
Guan-Zhong Pan(潘冠中), Bao-Lu Guan(关宝璐), Chen Xu(徐晨), Peng-Tao Li(李鹏涛), Jia-Wei Yang(杨嘉炜), Zhen-Yang Liu(刘振杨). Chin. Phys. B, 2018, 27(1): 014204.
[10] Rubidium-beam microwave clock pumped by distributed feedback diode lasers
Chang Liu(刘畅), Sheng Zhou(周晟), Yan-Hui Wang(王延辉), Shi-Min Hou(侯士敏). Chin. Phys. B, 2017, 26(11): 113201.
[11] Diode laser using narrow bandwidth interference filter at 852 nm and its application in Faraday anomalous dispersion optical filter
Zhaojie Jiang(蒋招杰), Qi Zhou(周琦), Zhiming Tao(陶智明), Xiaogang Zhang(张晓刚), Shengnan Zhang(张盛楠), Chuanwen Zhu(祝传文), Pingwei Lin(林平卫), Jingbiao Chen(陈景标). Chin. Phys. B, 2016, 25(8): 083201.
[12] An optimized ion trap geometry to measure quadrupole shifts of 171Yb+ clocks
N Batra, B K Sahoo, S De. Chin. Phys. B, 2016, 25(11): 113703.
[13] Recent improvements on the atomic fountain clock at SIOM
Du Yuan-Bo (杜远博), Wei Rong (魏荣), Dong Ri-Chang (董日昌), Zou Fan (邹凡), Wang Yu-Zhu (王育竹). Chin. Phys. B, 2015, 24(7): 070601.
[14] Integrated physics package of a chip-scale atomic clock
Li Shao-Liang (李绍良), Xu Jing (徐静), Zhang Zhi-Qiang (张志强), Zhao Lu-Bing (赵璐冰), Long Liang (龙亮), Wu Ya-Ming (吴亚明). Chin. Phys. B, 2014, 23(7): 074302.
[15] Review of chip-scale atomic clocks based on coherent population trapping
Wang Zhong (汪中). Chin. Phys. B, 2014, 23(3): 030601.
No Suggested Reading articles found!