CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Demonstration of Faraday anomalous dispersion optical filter with reflection configuration |
Yi Liu(刘艺)1, Baodong Yang(杨保东)1,2,3,†, Junmin Wang(王军民)1,2,3, Wenyi Huang(黄文艺)1, Zhiyu Gou(缑芝玉)1, and Haitao Zhou(周海涛)1 |
1 College of Physics and Electronic Engineering, Shanxi University, Taiyuan 030006, China; 2 State Key Laboratory of Quantum Optics and Quantum Optics Devices and Institute of Opto-Electronics, Shanxi University, Taiyuan 030006, China; 3 Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China |
|
|
Abstract A narrow linewidth Faraday anomalous dispersion optical filter (FADOF) with reflection configuration is achieved for the first time based on the cesium (Cs) ground state 6S1/2 to the excited state 6P3/2 transition at 852 nm. Compared with the conventional FADOF with transmission configuration, reflection-type FADOF can greatly improve the transmittance of optical filter under the same experimental parameters, because it allows signal light to go and return through the atomic vapor cell. In our experiment, peak transmittance at Cs 6S1/2 F=4-6P3/2 transition is 81% for the reflection-type FADOF, and while 54% for the transmission-type FADOF when the temperature of Cs vapor cell and the axial magnetic field are 60 ℃ and 19 G. The idea of this reflection-type FADOF design has the potential to be applied to the FADOF operating between two excited states to obtain higher transmittance.
|
Received: 30 June 2021
Revised: 23 August 2021
Accepted manuscript online: 01 September 2021
|
PACS:
|
78.20.Ls
|
(Magneto-optical effects)
|
|
85.70.Sq
|
(Magnetooptical devices)
|
|
43.58.Kr
|
(Spectrum and frequency analyzers and filters; acoustical and electrical oscillographs; photoacoustic spectrometers; acoustical delay lines and resonators)
|
|
84.40.Xb
|
(Telemetry: remote control, remote sensing; radar)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61975102 and 11974226), the National Key Research and Development Program of China (Grant No. 2017YFA0304502), the Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi, China (Grant No. 2019L0101), and the Natural Science Foundation of Shanxi Province, China (Grant No. 20210302123437). |
Corresponding Authors:
Baodong Yang
E-mail: ybd@sxu.edu.cn
|
Cite this article:
Yi Liu(刘艺), Baodong Yang(杨保东), Junmin Wang(王军民), Wenyi Huang(黄文艺), Zhiyu Gou(缑芝玉), and Haitao Zhou(周海涛) Demonstration of Faraday anomalous dispersion optical filter with reflection configuration 2022 Chin. Phys. B 31 017804
|
[1] Gelbwachs J A 1988 IEEE J. Quant. Electr. 24 1266 [2] Tao Z M, Chen M Z, Zhou Z F, Ye B L, Zeng J H and Zheng H P 2019 Opt. Express 27 13142 [3] Luo B, Yin L F, Xiong J Y, Chen J B and Guo H 2018 Opt. Lett. 43 2458 [4] Pan D, Xue X B, Shang H S, Luo B, Chen J B and Guo H 2016 Sci. Rep. 6 29882 [5] Tian Y, Tan B Z, Yang J, Zhang Y and Gu S H 2015 Chin. Phys. B 24 063302 [6] Tan Z, Sun X P, Luo J, Cheng Y, Zhao X C, Zhou X, Wang J and Zhan M S 2014 Chin. Opt. Lett. 12 121404 [7] Jiang Z J, Zhou Q, Tao Z M, Zhang X G, Zhang S N, Zhu C W, Lin P W and Chen J B 2016 Chin. Phys. B 25 083201 [8] Chang P Y, Shi T T, Zhang S N, Shang H S, Pan D and Chen J B 2017 Chin. Opt. Lett. 15 121401 [9] Tang J X, Wang Q J, Li Y M, Zhang L, Gan J H, Duan M H, Kong J K and Zheng L M 1995 Appl. Opt. 34 2619 [10] Ling L and Bi G 2014 Opt. Lett. 39 3324 [11] Wang Y F, Zhang X G, Wang D Y, Tao Z M, Zhuang W and Chen J B 2012 Opt. Express 20 25817 [12] Popescu A and Walther T 2010 Appl. Phys. B 98 667 [13] Popescu A, Walldorf D, Schorstein K and Walther T 2006 Opt. Commun. 264 475 [14] Chang P Y, Chen Y L, Shang H S, Guan X L, Guo H, Chen J B and Luo B 2019 Appl. Phys. B. 125 230 [15] Tao Z M, Hong Y L, Luo B, Chen J B and Guo H 2015 Opt. Lett. 40 4348 [16] Zhuang W and Chen J B 2014 Opt. Lett. 39 6339 [17] Ohman Y 1956 Stockholms Obs. Ann. 19 9 [18] Dressler E T, Laux A E and Billmers R I 1996 J. Opt. Soc. Amer. B 13 1849 [19] Liu S Q, Zhang Y D, Wu H and Yuan P 2012 Opt. Commun. 285 1181 [20] Yin B and Shay T M 1991 Opt. Lett. 16 1617 [21] Xue X B, Pan D, Zhang X G, Luo B, Chen J B and Guo H 2015 Photon. Res. 3 275 [22] Zhang Y D, Jia X L, Bi Y, Ma Z G and Wang Q 2002 Chin. Phys. Lett. 19 807 [23] Miao X Y, Yin L F, Zhuang W, Luo B, Dang A H, Chen J B and Guo H 2011 Rev. Sci. Instrum. 82 086106 [24] Xiong J Y, Yin L F, Luo B and Guo H 2016 Opt. Express 24 14925 [25] Yin L F, Luo B, Chen Z J, Zhong L and Guo H 2014 Opt. Lett. 39 842 [26] Sun Q Q, Hong Y L, Zhuang W, Liu Z W and Chen J B 2012 Appl. Phys. Lett. 101 211102 [27] Peng Y F, Zhang W J, Zhang L and Tang J X 2009 Opt. Commun. 282 236 [28] Yang B D, Liu Y and Wang J M 2020 Opt. Commun. 474 126102 [29] Billmers R I, Gayen S K, Squicciarini M F, Contarino V M, Scharpf W J and Allocca D M 1995 Opt. Lett. 20 106 [30] Tao Z M, Zhang X G, Chen M, Liu Z Z, Zhu C W, Liu Z W and Chen J B 2016 Phys. Lett. A 380 2150 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|