Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(1): 017804    DOI: 10.1088/1674-1056/ac229d
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Demonstration of Faraday anomalous dispersion optical filter with reflection configuration

Yi Liu(刘艺)1, Baodong Yang(杨保东)1,2,3,†, Junmin Wang(王军民)1,2,3, Wenyi Huang(黄文艺)1, Zhiyu Gou(缑芝玉)1, and Haitao Zhou(周海涛)1
1 College of Physics and Electronic Engineering, Shanxi University, Taiyuan 030006, China;
2 State Key Laboratory of Quantum Optics and Quantum Optics Devices and Institute of Opto-Electronics, Shanxi University, Taiyuan 030006, China;
3 Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China
Abstract  A narrow linewidth Faraday anomalous dispersion optical filter (FADOF) with reflection configuration is achieved for the first time based on the cesium (Cs) ground state 6S1/2 to the excited state 6P3/2 transition at 852 nm. Compared with the conventional FADOF with transmission configuration, reflection-type FADOF can greatly improve the transmittance of optical filter under the same experimental parameters, because it allows signal light to go and return through the atomic vapor cell. In our experiment, peak transmittance at Cs 6S1/2 F=4-6P3/2 transition is 81% for the reflection-type FADOF, and while 54% for the transmission-type FADOF when the temperature of Cs vapor cell and the axial magnetic field are 60 ℃ and 19 G. The idea of this reflection-type FADOF design has the potential to be applied to the FADOF operating between two excited states to obtain higher transmittance.
Keywords:  Faraday effect      optical filter      remote sensing  
Received:  30 June 2021      Revised:  23 August 2021      Accepted manuscript online:  01 September 2021
PACS:  78.20.Ls (Magneto-optical effects)  
  85.70.Sq (Magnetooptical devices)  
  43.58.Kr (Spectrum and frequency analyzers and filters; acoustical and electrical oscillographs; photoacoustic spectrometers; acoustical delay lines and resonators)  
  84.40.Xb (Telemetry: remote control, remote sensing; radar)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61975102 and 11974226), the National Key Research and Development Program of China (Grant No. 2017YFA0304502), the Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi, China (Grant No. 2019L0101), and the Natural Science Foundation of Shanxi Province, China (Grant No. 20210302123437).
Corresponding Authors:  Baodong Yang     E-mail:  ybd@sxu.edu.cn

Cite this article: 

Yi Liu(刘艺), Baodong Yang(杨保东), Junmin Wang(王军民), Wenyi Huang(黄文艺), Zhiyu Gou(缑芝玉), and Haitao Zhou(周海涛) Demonstration of Faraday anomalous dispersion optical filter with reflection configuration 2022 Chin. Phys. B 31 017804

[1] Gelbwachs J A 1988 IEEE J. Quant. Electr. 24 1266
[2] Tao Z M, Chen M Z, Zhou Z F, Ye B L, Zeng J H and Zheng H P 2019 Opt. Express 27 13142
[3] Luo B, Yin L F, Xiong J Y, Chen J B and Guo H 2018 Opt. Lett. 43 2458
[4] Pan D, Xue X B, Shang H S, Luo B, Chen J B and Guo H 2016 Sci. Rep. 6 29882
[5] Tian Y, Tan B Z, Yang J, Zhang Y and Gu S H 2015 Chin. Phys. B 24 063302
[6] Tan Z, Sun X P, Luo J, Cheng Y, Zhao X C, Zhou X, Wang J and Zhan M S 2014 Chin. Opt. Lett. 12 121404
[7] Jiang Z J, Zhou Q, Tao Z M, Zhang X G, Zhang S N, Zhu C W, Lin P W and Chen J B 2016 Chin. Phys. B 25 083201
[8] Chang P Y, Shi T T, Zhang S N, Shang H S, Pan D and Chen J B 2017 Chin. Opt. Lett. 15 121401
[9] Tang J X, Wang Q J, Li Y M, Zhang L, Gan J H, Duan M H, Kong J K and Zheng L M 1995 Appl. Opt. 34 2619
[10] Ling L and Bi G 2014 Opt. Lett. 39 3324
[11] Wang Y F, Zhang X G, Wang D Y, Tao Z M, Zhuang W and Chen J B 2012 Opt. Express 20 25817
[12] Popescu A and Walther T 2010 Appl. Phys. B 98 667
[13] Popescu A, Walldorf D, Schorstein K and Walther T 2006 Opt. Commun. 264 475
[14] Chang P Y, Chen Y L, Shang H S, Guan X L, Guo H, Chen J B and Luo B 2019 Appl. Phys. B. 125 230
[15] Tao Z M, Hong Y L, Luo B, Chen J B and Guo H 2015 Opt. Lett. 40 4348
[16] Zhuang W and Chen J B 2014 Opt. Lett. 39 6339
[17] Ohman Y 1956 Stockholms Obs. Ann. 19 9
[18] Dressler E T, Laux A E and Billmers R I 1996 J. Opt. Soc. Amer. B 13 1849
[19] Liu S Q, Zhang Y D, Wu H and Yuan P 2012 Opt. Commun. 285 1181
[20] Yin B and Shay T M 1991 Opt. Lett. 16 1617
[21] Xue X B, Pan D, Zhang X G, Luo B, Chen J B and Guo H 2015 Photon. Res. 3 275
[22] Zhang Y D, Jia X L, Bi Y, Ma Z G and Wang Q 2002 Chin. Phys. Lett. 19 807
[23] Miao X Y, Yin L F, Zhuang W, Luo B, Dang A H, Chen J B and Guo H 2011 Rev. Sci. Instrum. 82 086106
[24] Xiong J Y, Yin L F, Luo B and Guo H 2016 Opt. Express 24 14925
[25] Yin L F, Luo B, Chen Z J, Zhong L and Guo H 2014 Opt. Lett. 39 842
[26] Sun Q Q, Hong Y L, Zhuang W, Liu Z W and Chen J B 2012 Appl. Phys. Lett. 101 211102
[27] Peng Y F, Zhang W J, Zhang L and Tang J X 2009 Opt. Commun. 282 236
[28] Yang B D, Liu Y and Wang J M 2020 Opt. Commun. 474 126102
[29] Billmers R I, Gayen S K, Squicciarini M F, Contarino V M, Scharpf W J and Allocca D M 1995 Opt. Lett. 20 106
[30] Tao Z M, Zhang X G, Chen M, Liu Z Z, Zhu C W, Liu Z W and Chen J B 2016 Phys. Lett. A 380 2150
[1] Learnable three-dimensional Gabor convolutional network with global affinity attention for hyperspectral image classification
Hai-Zhu Pan(潘海珠), Mo-Qi Liu(刘沫岐), Hai-Miao Ge(葛海淼), and Qi Yuan(袁琪). Chin. Phys. B, 2022, 31(12): 120701.
[2] Tunable plasmon-induced transparency based on asymmetric H-shaped graphene metamaterials
Yu-Chen Tian(田雨宸), Wei Jia(贾微), Pei-Wen Ren(任佩雯), Chun-Zhen Fan(范春珍). Chin. Phys. B, 2018, 27(12): 124205.
[3] Reflective ghost imaging free from vibrating detectors
Heng-xing Li(李恒星), Yan-feng Bai(白艳锋), Xiao-hui Shi(施晓辉), Su-qin Nan(南苏琴), Li-jie Qu(屈利杰), Qian Shen(沈倩), Xi-quan Fu(傅喜泉). Chin. Phys. B, 2017, 26(10): 104204.
[4] Diode laser using narrow bandwidth interference filter at 852 nm and its application in Faraday anomalous dispersion optical filter
Zhaojie Jiang(蒋招杰), Qi Zhou(周琦), Zhiming Tao(陶智明), Xiaogang Zhang(张晓刚), Shengnan Zhang(张盛楠), Chuanwen Zhu(祝传文), Pingwei Lin(林平卫), Jingbiao Chen(陈景标). Chin. Phys. B, 2016, 25(8): 083201.
[5] Ramsey-CPT spectrum with the Faraday effect and its application to atomic clocks
Tian Yuan (田原), Tan Bo-Zhong (谭伯仲), Yang Jing (杨晶), Zhang Yi (张奕), Gu Si-Hong (顾思洪). Chin. Phys. B, 2015, 24(6): 063302.
[6] Femtosecond filamentation induced fluorescence technique for atmospheric sensing
Yuan Shuai (袁帅), Chin See Leang (陈瑞良), Zeng He-Ping (曾和平). Chin. Phys. B, 2015, 24(1): 014208.
[7] Extraordinary optical transmission through a subwavelength composite hole-pillar array
Shao Wei-Jia (邵伟佳), Li Wei-Min (李为民), Xu Xiao-Liang (许小亮), Wang Hui-Jie (王会杰), Wu Yi-Zhi (吴以治), Yu Jing (郁菁). Chin. Phys. B, 2014, 23(11): 117301.
[8] Monitoring of the ducting by a ground-based GPS receiver
Sheng Zheng (盛峥), Fang Han-Xian (方涵先). Chin. Phys. B, 2013, 22(2): 029301.
[9] Ground-based remote sensing of atmospheric total column CO2 and CH4 by direct sunlight in Hefei
Cheng Si-Yang (程巳阳), Xu Liang (徐亮), Gao Min-Guang (高闽光), Li Sheng (李胜), Jin Ling (金岭), Tong Jing-Jing (童晶晶), Wei Xiu-Li (魏秀丽), Liu Jian-Guo (刘建国), Liu Wen-Qing (刘文清). Chin. Phys. B, 2013, 22(12): 129201.
[10] Remote sensing of atmospheric duct parameters using simulated annealing
Zhao Xiao-Feng(赵小峰), Huang Si-Xun(黄思训), Xiang Jie(项杰), and Shi Wei-Lai(施伟来) . Chin. Phys. B, 2011, 20(9): 099201.
[11] Noise analysis and measurement of time delay and integration charge coupled device
Wang De-Jiang(王德江) and Zhang Tao(张涛) . Chin. Phys. B, 2011, 20(8): 087202.
[12] Ultra-narrow bandwidth optical filters consisting of one-dimensional photonic crystals with anomalous dispersion materials
Liu Jiang-Tao (刘江涛), Zhou Yun-Song (周云松), Wang Fu-He (王福合), Gu Ben-Yuan (顾本源). Chin. Phys. B, 2005, 14(12): 2474-2477.
No Suggested Reading articles found!