|
|
Diamond-based electron emission: Structure, properties and mechanisms |
Liang-Xue Gu(顾梁雪), Kai Yang(杨凯), Yan Teng(滕妍), Wei-Kang Zhao(赵伟康), Geng-You Zhao(赵耕右), Kang-Kang Fan(凡康康), Bo Feng(冯博), Rong Zhang(张荣), You-Dou Zheng(郑有炓), Jian-Dong Ye(叶建东), Shun-Ming Zhu(朱顺明), Kun Tang(汤琨)†, and Shu-Lin Gu(顾书林)‡ |
School of Electronic Science and Engineering, Nanjing University, Nanjing 210046, China |
|
|
Abstract Diamond has an ultrawide bandgap with excellent physical properties, such as high critical electric field, excellent thermal conductivity, high carrier mobility, etc. Diamond with a hydrogen-terminated (H-terminated) surface has a negative elaffinity (NEA) and can easily produce surface electrons from valence or trapped electrons via optical absorption, thermal heating energy or carrier transport in a PN junction. The NEA of the H-terminated surface enables surface electrons to emit with high efficiency into the vacuum without encountering additional barriers and promotes further development and application of diamond-based emitting devices. This article reviews the electron emission properties of H-terminated diamond surfaces exhibiting NEA characteristics. The electron emission is induced by different physical mechanisms. Recent advancements in electron-emitting devices based on diamond are also summarized. Finally, the current challenges and future development opportunities are discussed to further develop the relevant applications of diamond-based electron-emitting devices.
|
Received: 11 April 2024
Revised: 06 June 2024
Accepted manuscript online: 24 June 2024
|
PACS:
|
81.15.Gh
|
(Chemical vapor deposition (including plasma-enhanced CVD, MOCVD, ALD, etc.))
|
|
81.05.ug
|
(Diamond)
|
|
07.30.Bx
|
(Degasification, residual gas)
|
|
07.30.Kf
|
(Vacuum chambers, auxiliary apparatus, and materials)
|
|
Fund: This work was supported by the National Natural Science Foundation of China (Grant No. 62274084) and the Fundamental Research Funds for the Central Universities (Grant No. 0210-14380193). |
Corresponding Authors:
Kun Tang, Shu-Lin Gu
E-mail: ktang@nju.edu.cn;slgu@nju.edu.cn
|
Cite this article:
Liang-Xue Gu(顾梁雪), Kai Yang(杨凯), Yan Teng(滕妍), Wei-Kang Zhao(赵伟康), Geng-You Zhao(赵耕右), Kang-Kang Fan(凡康康), Bo Feng(冯博), Rong Zhang(张荣), You-Dou Zheng(郑有炓), Jian-Dong Ye(叶建东), Shun-Ming Zhu(朱顺明), Kun Tang(汤琨), and Shu-Lin Gu(顾书林) Diamond-based electron emission: Structure, properties and mechanisms 2024 Chin. Phys. B 33 098102
|
[1] Mahmood N, Mehmood M Q and Tahir F A 2020 Sci. Rep. 10 18502 [2] Jhong Y S, Tseng H T and Lin S J 2019 J. Alloys Compd. 801 589 [3] Bunkin N, Shkirin A, Babenko V, Sychev A, Lomkova A and Kulikov E 2015 Phys. Wave Phenom. 23 161 [4] Mallik A K, Dandapat N, Chakraborty S, Mandal A K, Ghosh J, Unnikrishnan M, Bysakh S and Balla V K 2014 Process. Appl. Ceram. 8 69 [5] Yang N J, Yu S Y, Macpherson J V, Einaga Y, Zhao H Y, Zhao G H, Swain G M and Jiang X 2019 Chem. Soc. Rev. 48 157 [6] Tang H, Yuan X H, Cheng Y, Fei H Z, Liu F Y, Liang T, Zeng Z D, Ishii T, Wang M S and Katsura T 2021 Nature 599 605 [7] Wan L F, Mu C Y, Liu Y F, Cheng S H, Wang Q L, Li L A, Li H D and Zou G T 2022 Chin. Phys. Lett. 39 036801 [8] Mallik A K, Shivashankar S A and Biswas S K 2009 Sadhana 34 811 [9] Crawford K G, Maini I, Macdonald D A and Moran D A 2021 Prog. Surf. Sci. 96 100613 [10] Makino T, Oyama K, Kato H, Takeuchi D, Ogura M, Okushi H and Yamasaki S 2014 Jpn. J. Appl. Phys. 53 05FA12 [11] Wen B, Zhao J J and Li T J 2013 Int. Mater. Rev. 52 131 [12] Okano K, Yamada T, Sawabe A, Koizumi S, Itoh J and Amaratunga G A J 2001 Appl. Phys. Lett. 79 275 [13] Kageura T, Hideko M, Tsuyuzaki I, Morishita A, Kawano A, Sasama Y, Yamaguchi T, Takano Y, Tachiki M, Ooi S, Hirata K, Arisawa S and Kawarada H 2019 Sci. Rep. 9 15214 [14] Aharonovich I, Greentree A D and Prawer S 2011 Nat. Photonics 5 397 [15] Gao J, Niu J J, Qin S and Wu X 2017 Sci. China: Earth Sci. 60 207 [16] James M C, Fogarty F, Zulkharnay R, Fox N A and May P W 2021 Carbon 171 532 [17] Sankaran K J, Yeh C J, Drijkoningen S, Pobedinskas P, Van Bael M K, Leou K C, Lin I N and Haenen K 2016 Nanotechnology 28 065701 [18] Sankaran K J, Ficek M, Kunuku S, Panda K, Yeh C J, Park J Y, Sawczak M, Michałowski P P, Leou K C and Bogdanowicz R 2018 Nanoscale 10 1345 [19] Shimaoka T, Kuwabara D, Hara A, Makino T, Tanaka M and Koizumi S 2017 Appl. Phys. Lett. 110 212104 [20] Yang H C, Ma Y D and Dai Y 2022 Functional Diamond 1 150 [21] Raymakers J, Haenen K and Maes W 2019 J. Mater. Chem. C 7 10134 [22] Sun T, Koeck F A, Rezikyan A, Treacy M M and Nemanich R J 2014 Phys. Rev. B 90 121302 [23] Salvatori S, Brugnoli E, Rossi M C and Pinzari F 2001 Diamond Relat. Mater. 10 852 [24] Masuzawa T, Shiraki Y, Kudo Y, Saito I, Yamaguchi H, Yamada T and Okano K 2008 Appl. Surf. Sci. 254 6285 [25] Takeuchi D, Ogura M, Ri S G, Kato H, Okushi H and Yamasaki S 2008 Diamond Relat. Mater. 17 986 [26] Salerno R, Valentini V, Bolli E, Mastellone M, Serpente V, Mezzi A, Tortora L, Colantoni E, Bellucci A and Polini R 2024 ACS Appl. Energy Mater. 7 868 [27] Donato N, Rouger N, Pernot J, Longobardi G and Udrea F 2019 J. Phys. D: Appl. Phys. 53 093001 [28] Ikeda T and Teii K 2009 Appl. Phys. Lett. 94 14 [29] Yamada T, Masuzawa T, Mimura H and Okano K 2016 J. Phys. D: Appl. Phys. 49 045102 [30] Takeuchi D, Makino T, Kato H, Okushi H and Yamasaki S 2011 Physica Status Solidi (a) 208 2073 2073 [31] Geis M W, Efremow N N, Krohn K E, Twichell J C, Lyszczarz T M, Kalish R, Greer J A and Tabat M D 1998 Nature 393 431 [32] Sugino T, Kuriyama K, Kimura C, Yokota Y, Kawasaki S and Shirafuji J 1999 J. Appl. Phys. 86 4635 [33] Yamada T, Nebel C E, Rezek B, Takeuchi D, Fujimori N, Namba A, Nishibayashi Y, Yamaguchi H, Saito I and Okano K 2005 Appl. Phys. Lett. 87 234107 [34] Yamada T, Nebel C E, Somu K, Uetsuka H, Yamaguchi H, Kudo Y, Okano K and Shikata S I 2007 Physica Status Solidi (a) 204 2957 [35] Lloret F, Sankaran K J, Millan-Barba J, Desta D, Rouzbahani R, Pobedinskas P, Gutierrez M, Boyen H G and Haenen K 2020 Nanomaterials (Basel) 10 1024 [36] Sankaran K J, Chen H C, Sundaravel B, Lee C Y, Tai N H and Lin I N 2013 Appl. Phys. Lett. 102 061604 [37] Kachwala A, Chubenko O, Kim D, Simakov E and Karkare S 2022 J. Appl. Phys. 132 224901 [38] Johnson S, Markwitz A, Rudolphi M, Baumann H, Oei S P, Teo K B K and Milne W I 2004 Appl. Phys. Lett. 85 3277 [39] Nagao M, Tamura Y, Matsukawa T, Kanemaru S, Itoh J and Tokunaga K 2002 J. Vac. Sci. Technol. B 20 2309 [40] Lenk C, Lenk S, Holz M, Guliyev E, Hofmann M, Ivanov T, Rangelow I W, Behzadirad M, Rishinaramangalam A K, Feezell D and Busani T 2018 J. Vac. Sci. Technol. B 36 06 [41] Lu X, Yang Q, Chen W, Xiao C and Hirose A 2006 J. Vac. Sci. Technol. B 24 2575 [42] Torresin O, Borz M, Mauchain J, Blum I, Kleshch V I, Obraztsov A N, Vella A and Chalopin B 2019 Ultramicroscopy 202 51 [43] Ramaneti R, Sankaran K J, Korneychuk S, Yeh C J, Degutis G, Leou K C, Verbeeck J, Van Bael M K, Lin I N and Haenen K 2017 APL Mater. 5 066102 [44] Chang T H, Kunuku S, Hong Y J, Leou K C, Yew T R, Tai N H and Lin I N 2014 ACS Appl. Mater. Interfaces 6 11589 [45] Lin W, Wang T T, Wang Q L, Lv X Y, Li G Z, Li L A, Ao J P and Zou G T 2022 Chin. Phys. B 31 108105 [46] Zhu Y, Lin W, Li D S, Li L A, Lv X Y, Wang Q L and Zou G T 2023 Chin. Phys. B 32 088101 [47] Koizumi S, Watanabe K, Hasegawa M and Kanda H 2001 Science 292 1899 [48] Takeuchi D, Makino T, Kato H, Hirabayashi I, Okushi H and Yamasaki S 2010 Physica Status Solidi A 207 2093 [49] Lin I N, Koizumi S, Yater J and Koeck F 2014 MRS Bull. 39 533 [50] Shimaoka T, Umezawa H, Ichikawa K, Pernot J and Koizumi S 2020 Appl. Phys. Lett. 117 103902 [51] Takeuchi D, Makino T, Ri S G, Tokuda N, Kato H, Ogura M, Okushi H and Yamasaki S 2008 Appl. Phys. Express 1 015004 [52] Kato H, Makino T, Yamasaki S and Okushi H 2007 J. Phys. D: Appl. Phys. 40 6189 [53] Makino T, Tokuda N, Kato H, Kanno S, Yamasaki S and Okushi H 2008 Physica Status Solidi A 205 2200 [54] Suzuki M, Sakai T, Makino T, Kato H, Takeuchi D, Ogura M, Okushi H and Yamasaki S 2013 Physica Status Solidi (a) 210 2035 [55] Makino T, Yoshino K, Sakai N, Uchida K, Koizumi S, Kato H, Takeuchi D, Ogura M, Oyama K, Matsumoto T, Okushi H and Yamasaki S 2011 Appl. Phys. Lett. 99 061110 [56] Makino T, Ri S G, Tokuda N, Kato H, Yamasaki S and Okushi H 2009 Diamond Relat. Mater. 18 764 [57] Malakoutian M, Benipal M, Koeck F A, Nemanich R J and Chowdhury S 2020 IEEE J. Electron Devices Soc. 8 614 [58] Lobaev M A, Radishev D B, Bogdanov S A, Vikharev A L, Gorbachev A M, Isaev V A, Kraev S A, Okhapkin A I, Arhipova E A, Drozdov M N and Shashkin V I 2020 Physica Status Solidi RRL 14 2000347 [59] Kato H, Ogura M, Makino T, Takeuchi D and Yamasaki S 2016 Appl. Phys. Lett. 109 142102 [60] Oyama K, Ri S G, Kato H, Ogura M, Makino T, Takeuchi D, Tokuda N, Okushi H and Yamasaki S 2009 Appl. Phys. Lett. 94 152109 [61] Kato H, Makino T, Ogura M, Tokuda N, Okushi H and Yamasaki S 2009 Appl. Phys. Express 2 055502 [62] Takeuchi D, Makino T, Kato H, Okushi H and Yamasaki S 2011 Physica Status Solidi (a) 208 2073 [63] Honbu T, Takeuchi D, Ichikawa K, Ohmagari S, Teraji T, Ogura M, Kato H, Makino T and Shoji I 2021 Diamond and Relat. Mater. 117 108463 [64] Koeck F A, Benipal M and Nemanich R J 2020 Diamond Relat. Mater. 101 107607 [65] Okushi H, Watanabe H, Yamasaki S and Kanno S 2006 Physica Status Solidi A 203 3226 [66] Hasan M M, Wang C, Pala N and Shur M 2024 Nanomaterials 14 460 [67] Takeuchi D, Koizumi S, Makino T, Kato H, Ogura M, Ohashi H, Okushi H and Yamasaki S 2013 Physica Status Solidi (a) 210 1961 [68] Takeuchi D, Makino T, Kato H, Ogura M, Tokuda N, Oyama K, Matsumoto T, Okushi H and Yamasaki S 2011 Diamond Relat. Mater. 20 917 [69] Trucchi D M and Melosh N A 2017 MRS Bulletin 42 488 [70] Harniman R, May P W and Fox O J L 2017 Diamond Relat. Mater. 80 147 [71] Yamada T, Masuzawa T, Mimura H and Okano K 2015 J. Phys. D: Appl. Phys. 49 045102 [72] Gan L, Cimmino A, Prawer S, Bolker A and Kalish R 2011 Diamond Relat. Mater. 20 1263 [73] Nebel C E, Yang N, Uetsuka H, Yamada T and Watanabe H 2008 J. Appl. Phys. 103 013712 [74] Yamada T, Nebel C E and Shikata S I 2009 Appl. Surf. Sci. 256 1006 [75] Subramanian K, Kang W, Davidson J, Choi B and Howell M 2006 Diamond Relat. Mater. 15 1994 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|