Special Issue:
Featured Column — DATA PAPER
|
|
|
Single crystal growth and characterization of 166-type magnetic kagome metals |
Huangyu Wu(吴黄宇)1,2, Jinjin Liu(刘锦锦)1,2, Yongkai Li(李永恺)1,2,4, Peng Zhu(朱鹏)1,2, Liu Yang(杨柳)1,2, Fuhong Chen(陈富红)1,2, Deng Hu(胡灯)1,2, and Zhiwei Wang(王秩伟)1,2,3,4,† |
1 Centre for Quantum Physics, Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurement (MOE), School of Physics, Beijing Institute of Technology, Beijing 100081, China; 2 Beijing Key Laboratory of Nanophotonics and Ultrafine Optoelectronic Systems, Beijing Institute of Technology, Beijing 100081, China; 3 Beijing Institute of Technology, Zhuhai 519000, China; 4 Material Science Center, Yangtze Delta Region Academy of Beijing Institute of Technology, Jiaxing 314011, China |
|
|
Abstract Kagome magnets were predicted to be a good platform to investigate correlated topology band structure, Chern quantum phase, and geometrical frustration due to their unique lattice geometry. Here we reported single crystal growth of 166-type kagome magnetic materials, including HfMn$_{6}$Sn$_{6}$, ZrMn$_{6}$Sn$_{6}$, GdMn$_{6}$Sn$_{6}$ and GdV$_{6}$Sn$_{6}$, by using the flux method with Sn as the flux. Among them, HfMn$_{6}$Sn$_{6}$ and ZrMn$_{6}$Sn$_{6}$ single crystals were grown for the first time. X-ray diffraction measurements reveal that all four samples crystallize in HfFe$_{6}$Ge$_{6}$-type hexagonal structure with space group P6/mmm. All samples show metallic behavior from temperature dependence of resistivity measurements, and the dominant carrier is hole, except for GdV$_{6}$Sn$_{6}$ which is electron dominated. All samples have magnetic order with different transition temperatures, HfMn$_{6}$Sn$_{6}$, ZrMn$_{6}$Sn$_{6}$ and GdV$_{6}$Sn$_{6}$ are antiferromagnetic with $T_{\rm N}$ of 541 K, 466 K and 4 K respectively, while GdMn$_{6}$Sn$_{6}$ is ferrimagnetic with the critical temperature of about 470 K. This study will enrich the research platform of magnetic kagome materials and help explore the novel quantum phenomena in these interesting materials. The dataset of specific crystal structure parameters for HfMn$_{6}$Sn$_{6}$ are available in Science Data Bank, with the link https://doi.org/10.57760/sciencedb.j00113.00120.
|
Received: 23 May 2024
Revised: 05 June 2024
Accepted manuscript online: 07 June 2024
|
PACS:
|
81.10.-h
|
(Methods of crystal growth; physics and chemistry of crystal growth, crystal morphology, and orientation)
|
|
71.55.Ak
|
(Metals, semimetals, and alloys)
|
|
75.47.-m
|
(Magnetotransport phenomena; materials for magnetotransport)
|
|
Fund: Project supported by the Beijing Natural Science Foundation (Grant No. Z210006), the National Key Research and Development Program of China (Grant Nos. 2022YFA1403400 and 2020YFA0308800), and the Beijing National Laboratory for Condensed Matter Physics (Grant No. 2023BNLCMPKF007). |
Corresponding Authors:
Zhiwei Wang
E-mail: zhiweiwang@bit.edu.cn
|
Cite this article:
Huangyu Wu(吴黄宇), Jinjin Liu(刘锦锦), Yongkai Li(李永恺), Peng Zhu(朱鹏), Liu Yang(杨柳), Fuhong Chen(陈富红), Deng Hu(胡灯), and Zhiwei Wang(王秩伟) Single crystal growth and characterization of 166-type magnetic kagome metals 2024 Chin. Phys. B 33 098101
|
[1] Syozi I 1951 Theor. Phys 6 306 [2] Yin J X, Lian B and Hasan M Z 2022 Nature 612 647 [3] Neupert T, Denner M M, Yin J X, Thomale R and Hasan M Z 2022 Nat. Phys. 18 137 [4] Jiang K, Wu T, Yin J X, Wang Z Y, Hasan M Z, Wilson S D, Chen X H and Hu J P 2023 Natl. Sci. Rev. 10 nwac199 [5] Nguyen T and Li M D 2022 J. Appl. Phys. 131 060901 [6] Lin Z Y, Choi J H, Zhang Q, Qin W, Yi S H, Wang P D, Li L, Wang Y F, Zhang H, Sun Z, Wei L M, Zhang S B, Guo T F, Lu Q Y, Cho J H, Zeng C G and Zhang Z Y 2018 Phys. Rev. Lett. 121 096401 [7] Yin J X, Zhang S S, Li H, et al. 2018 Nature 562 91 [8] Kida T, Fenner L A, Dee A A, Terasaki I, Hagiwara M and Wills A S 2011 J. Phys.: Condes. Matter. 23 112205 [9] Wang L J Y, Zhu J J, Chen H Y, Wang H, Liu J J, Huang Y X, Jiang B Y, Zhao J J, Shi H J, Tian G, Wang H Y, Yao Y G, Yu D P, Wang Z W, Xiao C, Yang S A and Wu X S 2024 Phys. Rev. Lett. 132 106601 [10] Nakatsuji S, Kiyohara N and Higo T 2015 Nature 527 212 [11] Kimata M, Chen H, Kondou K, Sugimoto S, Muduli P K, Ikhlas M, Omori Y, Tomita T, MacDonald A H, Nakatsuji S and Otani Y 2019 Nature 565 627 [12] Liu E K, Sun Y, Kumar N, et al. 2018 Nat. Phys. 14 1125 [13] Wang Q, Xu Y F, Lou R, Liu Z H, Li M, Huang Y B, Shen D W, Weng H M, Wang S C and Lei H H 2018 Nat. Commun. 9 3681 [14] Liu D F, Liang A J, Liu E K, Xu Q N, Li Y W, Chen C, Pei D, Shi W J, Mo S K, Dudin P, Kim T, Cacho C, Li G, Sun Y, Yang L X, Liu Z K, Parkin S S P, Felser C and Chen Y L 2019 Science 365 1282 [15] Yin J X, Ma W L, Cochran T A, et al. 2020 Nature 583 533 [16] Gao L L, Shen S W, Wang Q, Shi W J, Zhao Y, Li C H, Cao W Z, Pei C Y, Ge J Y, Li G, Li J, Chen Y L, Yan S C and Qi Y P 2021 Appl. Phys. Lett. 119 096401 [17] Zhang H D, Koo J, Xu C Q, Sretenovic M, Yan B H and Ke X L 2022 Nat. Commun. 13 1091 [18] Ma W L, Xu X T, Yin J X, Yang H, Zhou H B, Cheng Z J, Huang Y Q, Qu Z, Wang F, Hasan M Z and Jia S 2021 Phys. Rev. Lett. 126 246602 [19] El Idrissi B C, Venturini G and Malaman B 1991 Mater. Res. Bull. 26 1331 [20] Venturini G 2006 Z. Krist-cryst Mater. 221 511 [21] Ghimire N J, Dally R L, Poudel L, Jones D C, Michel D, Magar N T, Bleuel M, McGuire M A, Jiang J S, Mitchell J F, Lynn J W and Mazin I I 2020 Sci. Adv. 6 eabe2680 [22] Chen D, Le C C, Fu C G, Lin H C, Schnelle W, Sun Y and Felser C 2021 Phys. Rev. B 103 144410 [23] Zeng H, Yu G, Luo X H, Chen C C, Fang C S, Ma S C, Mo Z J, Shen J, Yuan M and Zhong Z C 2022 J. Alloys Compd. 899 163356 [24] Kong X M, Tao Z C, Zhang R, Xia W, Chen X, Pei C Y, Ying T P, Qi Y P, Guo Y F, Yang X F and Li S Y 2024 Chin. Phys. Lett 41 047503 [25] Grzybowski M J, Wadley P, Edmonds K W, Campion R P, Dybko K, Majewicz M, Gallagher B L, Sawicki M and Dietl T 2019 AIP Adv. 9 115101 [26] Zhuravlev I A, Adhikari A and Belashchenko K D 2018 Appl. Phys. Lett. 113 162404 [27] Jungwirth T, Marti X, Wadley P and Wunderlich J 2016 Nat. Nanotechnol. 11 231 [28] Wadley P, Howells B, Zelezny J, et al. 2016 Science 351 587 [29] Ishikawa H, Yajima T, Kawamura M, Mitamura H and Kindo K 2021 J. Phys. Soc. Jpn. 90 124704 [30] Mazet T, Welter R and Malaman B 1999 J. Alloys Compd. 284 54 [31] Clatterbuck D M and Gschneidner K A 1999 J. Magn. Magn. Mater. 207 78 [32] Liu Y, Lyu M, Liu J Y, Zhang S, Yang J Y, Du Z W, Wang B B, Wei H X and Liu E K 2023 Chin. Phys. Lett 40 047102 [33] Kimura S, Matsuo A, Yoshii S, Kindo K, Zhang L, Brück E, Buschow K H J, de Boer F R, Lefèvre C and Venturini G 2006 J. Alloys Compd. 408 169 [34] Lee J and Mun E 2022 Phys. Rev. Mater. 6 083401 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|