Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(9): 098101    DOI: 10.1088/1674-1056/ad553b
Special Issue: Featured Column — DATA PAPER
DATA PAPER Prev   Next  

Single crystal growth and characterization of 166-type magnetic kagome metals

Huangyu Wu(吴黄宇)1,2, Jinjin Liu(刘锦锦)1,2, Yongkai Li(李永恺)1,2,4, Peng Zhu(朱鹏)1,2, Liu Yang(杨柳)1,2, Fuhong Chen(陈富红)1,2, Deng Hu(胡灯)1,2, and Zhiwei Wang(王秩伟)1,2,3,4,†
1 Centre for Quantum Physics, Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurement (MOE), School of Physics, Beijing Institute of Technology, Beijing 100081, China;
2 Beijing Key Laboratory of Nanophotonics and Ultrafine Optoelectronic Systems, Beijing Institute of Technology, Beijing 100081, China;
3 Beijing Institute of Technology, Zhuhai 519000, China;
4 Material Science Center, Yangtze Delta Region Academy of Beijing Institute of Technology, Jiaxing 314011, China
Abstract  Kagome magnets were predicted to be a good platform to investigate correlated topology band structure, Chern quantum phase, and geometrical frustration due to their unique lattice geometry. Here we reported single crystal growth of 166-type kagome magnetic materials, including HfMn$_{6}$Sn$_{6}$, ZrMn$_{6}$Sn$_{6}$, GdMn$_{6}$Sn$_{6}$ and GdV$_{6}$Sn$_{6}$, by using the flux method with Sn as the flux. Among them, HfMn$_{6}$Sn$_{6}$ and ZrMn$_{6}$Sn$_{6}$ single crystals were grown for the first time. X-ray diffraction measurements reveal that all four samples crystallize in HfFe$_{6}$Ge$_{6}$-type hexagonal structure with space group P6/mmm. All samples show metallic behavior from temperature dependence of resistivity measurements, and the dominant carrier is hole, except for GdV$_{6}$Sn$_{6}$ which is electron dominated. All samples have magnetic order with different transition temperatures, HfMn$_{6}$Sn$_{6}$, ZrMn$_{6}$Sn$_{6}$ and GdV$_{6}$Sn$_{6}$ are antiferromagnetic with $T_{\rm N}$ of 541 K, 466 K and 4 K respectively, while GdMn$_{6}$Sn$_{6}$ is ferrimagnetic with the critical temperature of about 470 K. This study will enrich the research platform of magnetic kagome materials and help explore the novel quantum phenomena in these interesting materials. The dataset of specific crystal structure parameters for HfMn$_{6}$Sn$_{6}$ are available in Science Data Bank, with the link https://doi.org/10.57760/sciencedb.j00113.00120.
Keywords:  kagome metal      single crystal growth      crystal structure      physical property  
Received:  23 May 2024      Revised:  05 June 2024      Accepted manuscript online:  07 June 2024
PACS:  81.10.-h (Methods of crystal growth; physics and chemistry of crystal growth, crystal morphology, and orientation)  
  71.55.Ak (Metals, semimetals, and alloys)  
  75.47.-m (Magnetotransport phenomena; materials for magnetotransport)  
Fund: Project supported by the Beijing Natural Science Foundation (Grant No. Z210006), the National Key Research and Development Program of China (Grant Nos. 2022YFA1403400 and 2020YFA0308800), and the Beijing National Laboratory for Condensed Matter Physics (Grant No. 2023BNLCMPKF007).
Corresponding Authors:  Zhiwei Wang     E-mail:  zhiweiwang@bit.edu.cn

Cite this article: 

Huangyu Wu(吴黄宇), Jinjin Liu(刘锦锦), Yongkai Li(李永恺), Peng Zhu(朱鹏), Liu Yang(杨柳), Fuhong Chen(陈富红), Deng Hu(胡灯), and Zhiwei Wang(王秩伟) Single crystal growth and characterization of 166-type magnetic kagome metals 2024 Chin. Phys. B 33 098101

[1] Syozi I 1951 Theor. Phys 6 306
[2] Yin J X, Lian B and Hasan M Z 2022 Nature 612 647
[3] Neupert T, Denner M M, Yin J X, Thomale R and Hasan M Z 2022 Nat. Phys. 18 137
[4] Jiang K, Wu T, Yin J X, Wang Z Y, Hasan M Z, Wilson S D, Chen X H and Hu J P 2023 Natl. Sci. Rev. 10 nwac199
[5] Nguyen T and Li M D 2022 J. Appl. Phys. 131 060901
[6] Lin Z Y, Choi J H, Zhang Q, Qin W, Yi S H, Wang P D, Li L, Wang Y F, Zhang H, Sun Z, Wei L M, Zhang S B, Guo T F, Lu Q Y, Cho J H, Zeng C G and Zhang Z Y 2018 Phys. Rev. Lett. 121 096401
[7] Yin J X, Zhang S S, Li H, et al. 2018 Nature 562 91
[8] Kida T, Fenner L A, Dee A A, Terasaki I, Hagiwara M and Wills A S 2011 J. Phys.: Condes. Matter. 23 112205
[9] Wang L J Y, Zhu J J, Chen H Y, Wang H, Liu J J, Huang Y X, Jiang B Y, Zhao J J, Shi H J, Tian G, Wang H Y, Yao Y G, Yu D P, Wang Z W, Xiao C, Yang S A and Wu X S 2024 Phys. Rev. Lett. 132 106601
[10] Nakatsuji S, Kiyohara N and Higo T 2015 Nature 527 212
[11] Kimata M, Chen H, Kondou K, Sugimoto S, Muduli P K, Ikhlas M, Omori Y, Tomita T, MacDonald A H, Nakatsuji S and Otani Y 2019 Nature 565 627
[12] Liu E K, Sun Y, Kumar N, et al. 2018 Nat. Phys. 14 1125
[13] Wang Q, Xu Y F, Lou R, Liu Z H, Li M, Huang Y B, Shen D W, Weng H M, Wang S C and Lei H H 2018 Nat. Commun. 9 3681
[14] Liu D F, Liang A J, Liu E K, Xu Q N, Li Y W, Chen C, Pei D, Shi W J, Mo S K, Dudin P, Kim T, Cacho C, Li G, Sun Y, Yang L X, Liu Z K, Parkin S S P, Felser C and Chen Y L 2019 Science 365 1282
[15] Yin J X, Ma W L, Cochran T A, et al. 2020 Nature 583 533
[16] Gao L L, Shen S W, Wang Q, Shi W J, Zhao Y, Li C H, Cao W Z, Pei C Y, Ge J Y, Li G, Li J, Chen Y L, Yan S C and Qi Y P 2021 Appl. Phys. Lett. 119 096401
[17] Zhang H D, Koo J, Xu C Q, Sretenovic M, Yan B H and Ke X L 2022 Nat. Commun. 13 1091
[18] Ma W L, Xu X T, Yin J X, Yang H, Zhou H B, Cheng Z J, Huang Y Q, Qu Z, Wang F, Hasan M Z and Jia S 2021 Phys. Rev. Lett. 126 246602
[19] El Idrissi B C, Venturini G and Malaman B 1991 Mater. Res. Bull. 26 1331
[20] Venturini G 2006 Z. Krist-cryst Mater. 221 511
[21] Ghimire N J, Dally R L, Poudel L, Jones D C, Michel D, Magar N T, Bleuel M, McGuire M A, Jiang J S, Mitchell J F, Lynn J W and Mazin I I 2020 Sci. Adv. 6 eabe2680
[22] Chen D, Le C C, Fu C G, Lin H C, Schnelle W, Sun Y and Felser C 2021 Phys. Rev. B 103 144410
[23] Zeng H, Yu G, Luo X H, Chen C C, Fang C S, Ma S C, Mo Z J, Shen J, Yuan M and Zhong Z C 2022 J. Alloys Compd. 899 163356
[24] Kong X M, Tao Z C, Zhang R, Xia W, Chen X, Pei C Y, Ying T P, Qi Y P, Guo Y F, Yang X F and Li S Y 2024 Chin. Phys. Lett 41 047503
[25] Grzybowski M J, Wadley P, Edmonds K W, Campion R P, Dybko K, Majewicz M, Gallagher B L, Sawicki M and Dietl T 2019 AIP Adv. 9 115101
[26] Zhuravlev I A, Adhikari A and Belashchenko K D 2018 Appl. Phys. Lett. 113 162404
[27] Jungwirth T, Marti X, Wadley P and Wunderlich J 2016 Nat. Nanotechnol. 11 231
[28] Wadley P, Howells B, Zelezny J, et al. 2016 Science 351 587
[29] Ishikawa H, Yajima T, Kawamura M, Mitamura H and Kindo K 2021 J. Phys. Soc. Jpn. 90 124704
[30] Mazet T, Welter R and Malaman B 1999 J. Alloys Compd. 284 54
[31] Clatterbuck D M and Gschneidner K A 1999 J. Magn. Magn. Mater. 207 78
[32] Liu Y, Lyu M, Liu J Y, Zhang S, Yang J Y, Du Z W, Wang B B, Wei H X and Liu E K 2023 Chin. Phys. Lett 40 047102
[33] Kimura S, Matsuo A, Yoshii S, Kindo K, Zhang L, Brück E, Buschow K H J, de Boer F R, Lefèvre C and Venturini G 2006 J. Alloys Compd. 408 169
[34] Lee J and Mun E 2022 Phys. Rev. Mater. 6 083401
[1] Single crystal growth and transport properties of narrow-bandgap semiconductor RhP2
De-Sheng Wu(吴德胜), Ping Zheng(郑萍), and Jian-Lin Luo(雒建林). Chin. Phys. B, 2024, 33(8): 088101.
[2] Cryo-EM combined with image deconvolution to determine ZIF-8 crystal structure
Kang Wu(吴抗), Baisong Yang(杨柏松), Wenhua Xue(薛文华), Dapeng Sun(孙大鹏), Binghui Ge(葛炳辉), and Yumei Wang(王玉梅). Chin. Phys. B, 2024, 33(7): 076802.
[3] Structure and superconducting properties of Ru1-xMox (x = 0.1—0.9) alloys
Yang Fu(付阳), Chunsheng Gong(龚春生), Zhijun Tu(涂志俊), Shangjie Tian(田尚杰), Shouguo Wang(王守国), and Hechang Lei(雷和畅). Chin. Phys. B, 2024, 33(4): 047404.
[4] Pressure-induced phase transition and electronic structure evolution in layered semimetal HfTe2
Mei-Guang Zhang(张美光), Lei Chen(陈磊), Long Feng(冯龙), Huan-Huan Tuo(拓换换), Yun Zhang(张云), Qun Wei(魏群), and Pei-Fang Li(李培芳). Chin. Phys. B, 2023, 32(8): 086101.
[5] Single crystal growth and electronic structure of Rh-doped Sr3Ir2O7
Bingqian Wang(王冰倩), Shuting Peng(彭舒婷), Zhipeng Ou(欧志鹏), Yuchen Wang(王宇晨), Muhammad Waqas, Yang Luo(罗洋), Zhiyuan Wei(魏志远), Linwei Huai(淮琳崴), Jianchang Shen(沈建昌), Yu Miao(缪宇), Xiupeng Sun(孙秀鹏), Yuewei Yin(殷月伟), and Junfeng He(何俊峰). Chin. Phys. B, 2023, 32(8): 087108.
[6] New MgO-H2O compounds at extreme conditions
Lanci Guo(郭兰慈) and Jurong Zhang(张车荣). Chin. Phys. B, 2023, 32(7): 076201.
[7] Probing the effects of lithium doping on structures, properties, and stabilities of magnesium cluster anions
Xiao-Yi Zhang(张小义), Ya-Ru Zhao(赵亚儒), Hong-Xing Li(李红星), Kai-Ge Cheng(成凯格), Zi-Rui Liu(刘子锐), Zhi-Ping Liu(刘芷萍), and Hang He(何航). Chin. Phys. B, 2023, 32(6): 066102.
[8] Dislocation mechanism of Ni47Co53 alloy during rapid solidification
Yun-Chun Liu(刘云春), Yong-Chao Liang(梁永超), Qian Chen(陈茜), Li Zhang(张利), Jia-Jun Ma(马家君), Bei Wang(王蓓), Ting-Hong Gao(高廷红), and Quan Xie(谢泉). Chin. Phys. B, 2023, 32(6): 066104.
[9] In-plane uniaxial-strain tuning of superconductivity and charge-density wave in CsV3Sb5
Xiaoran Yang(杨晓冉), Qi Tang(唐绮), Qiuyun Zhou(周秋韵), Huaiping Wang(王怀平), Yi Li(李意), Xue Fu(付雪), Jiawen Zhang(张加文), Yu Song(宋宇), Huiqiu Yuan(袁辉球), Pengcheng Dai(戴鹏程), and Xingye Lu(鲁兴业). Chin. Phys. B, 2023, 32(12): 127101.
[10] A new transition metal diphosphide α-MoP2 synthesized by a high-temperature and high-pressure technique
Xiaolei Liu(刘晓磊), Zhenhai Yu(于振海), Jianfu Li(李建福), Zhenzhen Xu(徐真真), Chunyin Zhou(周春银), Zhaohui Dong(董朝辉), Lili Zhang(张丽丽), Xia Wang(王霞), Na Yu(余娜), Zhiqiang Zou(邹志强),Xiaoli Wang(王晓丽), and Yanfeng Guo(郭艳峰). Chin. Phys. B, 2023, 32(1): 018102.
[11] Site selective 5f electronic correlations in β-uranium
Ruizhi Qiu(邱睿智), Liuhua Xie(谢刘桦), and Li Huang(黄理). Chin. Phys. B, 2023, 32(1): 017101.
[12] Superconductivity and unconventional density waves in vanadium-based kagome materials AV3Sb5
Hui Chen(陈辉), Bin Hu(胡彬), Yuhan Ye(耶郁晗), Haitao Yang(杨海涛), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2022, 31(9): 097405.
[13] Structural evolution and molecular dissociation of H2S under high pressures
Wen-Ji Shen(沈文吉), Tian-Xiao Liang(梁天笑), Zhao Liu(刘召), Xin Wang(王鑫), De-Fang Duan(段德芳), Hong-Yu Yu(于洪雨), and Tian Cui(崔田). Chin. Phys. B, 2022, 31(7): 076102.
[14] Isotropic negative thermal expansion and its mechanism in tetracyanidoborate salt CuB(CN)4
Chunyan Wang(王春艳), Qilong Gao(高其龙), Andrea Sanson, and Yu Jia(贾瑜). Chin. Phys. B, 2022, 31(6): 066501.
[15] Temperature-dependent structure and magnetization of YCrO3 compound
Qian Zhao(赵前), Ying-Hao Zhu(朱英浩), Si Wu(吴思), Jun-Chao Xia(夏俊超), Peng-Fei Zhou(周鹏飞), Kai-Tong Sun(孙楷橦), and Hai-Feng Li(李海峰). Chin. Phys. B, 2022, 31(4): 046101.
No Suggested Reading articles found!