CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Half-integer Shapiro steps in MgB2 focused He ion beam Josephson junctions |
Dali Yin(殷大利), Xinwei Cai(蔡欣炜)†, Tiequan Xu(徐铁权), Ruining Sun(孙瑞宁), Ying Han(韩颖), Yan Zhang(张焱)‡, Yue Wang(王越), and Zizhao Gan(甘子钊) |
Applied Superconductivity Center, State Key Laboratory for Mesoscopic Physics, School of Physics, Peking University, Beijing 100871, China |
|
|
Abstract Half-integer microwave induced steps (Shapiro steps) have been observed in many different Josephson junction systems, which have attracted a lot of attention because they signify the deviation of current phase relation (CPR) and uncover many unconventional physical properties. In this article, we first report the discovery of half-integer Shapiro steps in MgB$_2$ focused He ion beam (He-FIB) Josephson junctions. The half-integer steps' dependence on microwave frequency, temperature, microwave power, and magnetic field is also analyzed. We find that the existence of half-integer steps can be controlled by the magnetic field periodically, which is similar to that of high temperature superconductor (HTS) grain boundary junctions, and the similarity of the microstructures between gain boundary junctions and He-FIB junctions is discussed. As a consequence, we mainly attribute the physical origin of half-integer steps in MgB$_2$ He-FIB junctions to the model that a He-FIB junction is analogous to a parallel junctions' array. Our results show that He-FIB technology is a promising platform for researching CPR in junctions made of different superconductors.
|
Received: 17 February 2024
Revised: 15 May 2024
Accepted manuscript online:
|
PACS:
|
74.78.-w
|
(Superconducting films and low-dimensional structures)
|
|
03.75.Lm
|
(Tunneling, Josephson effect, Bose-Einstein condensates in periodic potentials, solitons, vortices, and topological excitations)
|
|
41.85.Ar
|
(Particle beam extraction, beam injection)
|
|
Fund: The work was supported by the National Natural Science Foundation of China (Grant No. 12104016) and the National Key Research and Development Program of China (Grant No. 2020YFF01014706). |
Corresponding Authors:
Xinwei Cai, Yan Zhang
E-mail: xwcai@pku.edu.cn;zhang_yan@pku.edu.cn
|
Cite this article:
Dali Yin(殷大利), Xinwei Cai(蔡欣炜), Tiequan Xu(徐铁权), Ruining Sun(孙瑞宁), Ying Han(韩颖), Yan Zhang(张焱), Yue Wang(王越), and Zizhao Gan(甘子钊) Half-integer Shapiro steps in MgB2 focused He ion beam Josephson junctions 2024 Chin. Phys. B 33 087404
|
[1] Josephson B D 1962 Phys. Lett. 1 251 [2] Shapiro S 1963 Phys. Rev. Lett. 11 80 [3] Lehnert K, Argaman N, Blank H R, Wong K, Allen S, Hu E and Kroemer H 1999 Phys. Rev. Lett. 82 1265 [4] Lee1 G H, Kim S, Jhi S H and Lee H J 2015 Nat. Commun. 6 6181 [5] English C D, Hamilton D R, Chialvo C, Moraru I C, Mason N and Harlingen D J V 2016 Phys. Rev. B 94 115435 [6] Ueda K, Matsuo S, Kamata H, Sato Y, Takeshige Y, Li K, Samuelson L, Xu H and Tarucha S 2020 Phys. Rev. Res. 2 033435 [7] Huang Z, Elfeky B H, Taniguchi T, Watanabe K, Shabani J and Shahrjerdi D 2023 Appl. Phys. Lett. 122 262601 [8] Sellier H, Baraduc C, Lefloch F and Calemczuk R 2004 Phys. Rev. Lett. 92 257005 [9] Stoutimore M J A, Rossolenko A N, Bolginov V V, Oboznov V A, Rusanov A Y, Baranov D S, Pugach N, Frolov S M, Ryazanov V V and Harlingen D J V 2018 Phys. Rev. Lett. 121 177702 [10] Li F, Wu L, Chen L, Zhang S, Peng W and Wang Z 2019 Phys. Rev. B 99 100506 [11] Yao Y, Cai R, Yang S H, Xing W, Ma Y, Mori M, Ji Y, Maekawa S, Xie X C and Han W 2021 Phys. Rev. B 104 104414 [12] Zhang Y, Lyu Z, Wang X, Zhuo E, Sun X, Li B, Shen J, Liu G, Qu F and Lü L 2022 Chin. Phys. B 31 107402 [13] Hou Y L, Wang X, Sun X P and Lü L 2023 Acta Phys. Sin. 72 037401 (in Chinese) [14] Benz S P, Rzchowski M S, Tinkham M and Lobb C J 1990 Phys. Rev. Lett. 64 693 [15] Sohn L L and Octavio M 1994 Phys. Rev. B 49 9236 [16] Heinz E and Seidel P 1997 J. Low Temp. Phys. 106 233 [17] Valizadeh A, Kolahchi M R and Straley J P 2007 Phys. Rev. B 76 214511 [18] Panghotra1 R, Raes B, de Souza Silva C C, Cools I, Keijers W, Scheerder J, Moshchalkov V and de Vondel J V 2020 Commun. Phys. 3 53 [19] Raes B, Tubsrinuan N, Sreedhar R, Guala D S, Panghotra R, Dausy H, de Souza Silva C C and de Vondel J V 2020 Phys. Rev. B 102 054507 [20] Early E A, Clark A F and Char K 1993 Appl. Phys. Lett. 62 3357 [21] Early E A, Steiner R L, Clark A F and Char K 1994 Phys. Rev. B 50 9409 [22] Yang H, Ku L, Cho H, Lu J and Horng H 1994 Physica C 235-240 3341 [23] Terpstra D, IJsselsteijn R P J and Rogalla H 1995 Appl. Phys. Lett. 66 2286 [24] Golubov A A, Kupriyanov M Y and Ll’ichev E 2004 Rev. Mod. Phys. 76 411 [25] Spanton E M, Deng M, Vaitiekenas S, Krogstrup P, Nygård J, Marcus C M and Moler K A 2017 Nat. Phys. 13 1177 [26] Buzdin A 2005 Phys. Rev. B 72 100501 [27] Goldobin E, Koelle D, Kleiner R and Buzdin A 2007 Phys. Rev. B 76 224523 [28] Romeo F and Luca R D 2004 Phys. Lett. A 328 330 [29] Fuechsle M, Bentner J, Ryndyk D A, Reinwald M, Wegscheider W and Strunk C 2009 Phys. Rev. Lett. 102 127001 [30] Cybart S A, Cho E Y, Wong T J, Wehlin B H, Ma M K, Huynh C and Dynes R C 2015 Nat. Nanotech 10 598 [31] Chen Z, Li Y, Zhu R, Xu J, Xu T, Yin D, Cai X, Wang Y, Lu J, Zhang Y and Ma P 2022 Chin. Phys. Lett. 39 077402 [32] Kasaei L, Melbourne T, Manichev V, Feldman L C, Gustafsson T, Chen K, Xi X X and Davidson B A 2018 AIP Advances 8 075020 [33] Wang Y T, LeFebvre J C, Cho E, McCoy S J, Li H, Gu G, Kadowaki K and Cybart S A 2021 IEEE Trans. Appl. Supercond. 31 1 [34] Li H, Cai H, Forman J, Cheng R, Hughes G, Walker H, Hamilton M C, Chen L, Zhang W, You L and Cybart S A 2023 IEEE Trans. Appl. Supercond. 33 1 [35] Ruhtinas A and Maasilta I J 2023 arXiv:2303.17348 [cond.mat.supr.con] [36] Chen Z, Zhang Y, Ma P, Xu Z, Li Y, Wang Y, Lu J, Ma Y and Gan Z 2024 Chin. Phys. B 33 047405 [37] Xi X X, Pogrebnyakov A V, Xu S Y, Chen K, Cui Y, Maertz E C, Zhuang C G, Li Q, Lamborn D R, Redwing J M, Liu Z K, Soukiassian A, Schlom D G, Weng X J, Dickey E C, Chen Y B, Tian W, Pan X Q, Cybart S A and Dynes R C 2007 Physica C 456 22 [38] Ambegaokar V and Halperin B I 1969 Phys. Rev. Lett. 22 1364 [39] Iorio A, Crippa A, Turini B, Salimian S, Carrega M, Chirolli L, Zannier V, Sorba L, Strambini E, Giazotto F and Heun S 2023 Phys. Rev. Res. 5 033015 [40] Rosenthal P A, Beasley M R, Char K, Colclough M S and Zaharchuk G 1991 Appl. Phys. Lett. 59 3482 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|