Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(8): 087404    DOI: 10.1088/1674-1056/ad4d62
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev  

Half-integer Shapiro steps in MgB2 focused He ion beam Josephson junctions

Dali Yin(殷大利), Xinwei Cai(蔡欣炜)†, Tiequan Xu(徐铁权), Ruining Sun(孙瑞宁), Ying Han(韩颖), Yan Zhang(张焱)‡, Yue Wang(王越), and Zizhao Gan(甘子钊)
Applied Superconductivity Center, State Key Laboratory for Mesoscopic Physics, School of Physics, Peking University, Beijing 100871, China
Abstract  Half-integer microwave induced steps (Shapiro steps) have been observed in many different Josephson junction systems, which have attracted a lot of attention because they signify the deviation of current phase relation (CPR) and uncover many unconventional physical properties. In this article, we first report the discovery of half-integer Shapiro steps in MgB$_2$ focused He ion beam (He-FIB) Josephson junctions. The half-integer steps' dependence on microwave frequency, temperature, microwave power, and magnetic field is also analyzed. We find that the existence of half-integer steps can be controlled by the magnetic field periodically, which is similar to that of high temperature superconductor (HTS) grain boundary junctions, and the similarity of the microstructures between gain boundary junctions and He-FIB junctions is discussed. As a consequence, we mainly attribute the physical origin of half-integer steps in MgB$_2$ He-FIB junctions to the model that a He-FIB junction is analogous to a parallel junctions' array. Our results show that He-FIB technology is a promising platform for researching CPR in junctions made of different superconductors.
Keywords:  Josephson junction      half-integer Shapiro steps      MgB$_2$      focused helium ion beam  
Received:  17 February 2024      Revised:  15 May 2024      Accepted manuscript online:  20 May 2024
PACS:  74.78.-w (Superconducting films and low-dimensional structures)  
  03.75.Lm (Tunneling, Josephson effect, Bose-Einstein condensates in periodic potentials, solitons, vortices, and topological excitations)  
  41.85.Ar (Particle beam extraction, beam injection)  
Fund: The work was supported by the National Natural Science Foundation of China (Grant No. 12104016) and the National Key Research and Development Program of China (Grant No. 2020YFF01014706).
Corresponding Authors:  Xinwei Cai, Yan Zhang     E-mail:  xwcai@pku.edu.cn;zhang_yan@pku.edu.cn

Cite this article: 

Dali Yin(殷大利), Xinwei Cai(蔡欣炜), Tiequan Xu(徐铁权), Ruining Sun(孙瑞宁), Ying Han(韩颖), Yan Zhang(张焱), Yue Wang(王越), and Zizhao Gan(甘子钊) Half-integer Shapiro steps in MgB2 focused He ion beam Josephson junctions 2024 Chin. Phys. B 33 087404

[1] Josephson B D 1962 Phys. Lett. 1 251
[2] Shapiro S 1963 Phys. Rev. Lett. 11 80
[3] Lehnert K, Argaman N, Blank H R, Wong K, Allen S, Hu E and Kroemer H 1999 Phys. Rev. Lett. 82 1265
[4] Lee1 G H, Kim S, Jhi S H and Lee H J 2015 Nat. Commun. 6 6181
[5] English C D, Hamilton D R, Chialvo C, Moraru I C, Mason N and Harlingen D J V 2016 Phys. Rev. B 94 115435
[6] Ueda K, Matsuo S, Kamata H, Sato Y, Takeshige Y, Li K, Samuelson L, Xu H and Tarucha S 2020 Phys. Rev. Res. 2 033435
[7] Huang Z, Elfeky B H, Taniguchi T, Watanabe K, Shabani J and Shahrjerdi D 2023 Appl. Phys. Lett. 122 262601
[8] Sellier H, Baraduc C, Lefloch F and Calemczuk R 2004 Phys. Rev. Lett. 92 257005
[9] Stoutimore M J A, Rossolenko A N, Bolginov V V, Oboznov V A, Rusanov A Y, Baranov D S, Pugach N, Frolov S M, Ryazanov V V and Harlingen D J V 2018 Phys. Rev. Lett. 121 177702
[10] Li F, Wu L, Chen L, Zhang S, Peng W and Wang Z 2019 Phys. Rev. B 99 100506
[11] Yao Y, Cai R, Yang S H, Xing W, Ma Y, Mori M, Ji Y, Maekawa S, Xie X C and Han W 2021 Phys. Rev. B 104 104414
[12] Zhang Y, Lyu Z, Wang X, Zhuo E, Sun X, Li B, Shen J, Liu G, Qu F and Lü L 2022 Chin. Phys. B 31 107402
[13] Hou Y L, Wang X, Sun X P and Lü L 2023 Acta Phys. Sin. 72 037401 (in Chinese)
[14] Benz S P, Rzchowski M S, Tinkham M and Lobb C J 1990 Phys. Rev. Lett. 64 693
[15] Sohn L L and Octavio M 1994 Phys. Rev. B 49 9236
[16] Heinz E and Seidel P 1997 J. Low Temp. Phys. 106 233
[17] Valizadeh A, Kolahchi M R and Straley J P 2007 Phys. Rev. B 76 214511
[18] Panghotra1 R, Raes B, de Souza Silva C C, Cools I, Keijers W, Scheerder J, Moshchalkov V and de Vondel J V 2020 Commun. Phys. 3 53
[19] Raes B, Tubsrinuan N, Sreedhar R, Guala D S, Panghotra R, Dausy H, de Souza Silva C C and de Vondel J V 2020 Phys. Rev. B 102 054507
[20] Early E A, Clark A F and Char K 1993 Appl. Phys. Lett. 62 3357
[21] Early E A, Steiner R L, Clark A F and Char K 1994 Phys. Rev. B 50 9409
[22] Yang H, Ku L, Cho H, Lu J and Horng H 1994 Physica C 235-240 3341
[23] Terpstra D, IJsselsteijn R P J and Rogalla H 1995 Appl. Phys. Lett. 66 2286
[24] Golubov A A, Kupriyanov M Y and Ll’ichev E 2004 Rev. Mod. Phys. 76 411
[25] Spanton E M, Deng M, Vaitiėkenas S, Krogstrup P, Nygård J, Marcus C M and Moler K A 2017 Nat. Phys. 13 1177
[26] Buzdin A 2005 Phys. Rev. B 72 100501
[27] Goldobin E, Koelle D, Kleiner R and Buzdin A 2007 Phys. Rev. B 76 224523
[28] Romeo F and Luca R D 2004 Phys. Lett. A 328 330
[29] Fuechsle M, Bentner J, Ryndyk D A, Reinwald M, Wegscheider W and Strunk C 2009 Phys. Rev. Lett. 102 127001
[30] Cybart S A, Cho E Y, Wong T J, Wehlin B H, Ma M K, Huynh C and Dynes R C 2015 Nat. Nanotech 10 598
[31] Chen Z, Li Y, Zhu R, Xu J, Xu T, Yin D, Cai X, Wang Y, Lu J, Zhang Y and Ma P 2022 Chin. Phys. Lett. 39 077402
[32] Kasaei L, Melbourne T, Manichev V, Feldman L C, Gustafsson T, Chen K, Xi X X and Davidson B A 2018 AIP Advances 8 075020
[33] Wang Y T, LeFebvre J C, Cho E, McCoy S J, Li H, Gu G, Kadowaki K and Cybart S A 2021 IEEE Trans. Appl. Supercond. 31 1
[34] Li H, Cai H, Forman J, Cheng R, Hughes G, Walker H, Hamilton M C, Chen L, Zhang W, You L and Cybart S A 2023 IEEE Trans. Appl. Supercond. 33 1
[35] Ruhtinas A and Maasilta I J 2023 arXiv:2303.17348
[cond.mat.supr.con]
[36] Chen Z, Zhang Y, Ma P, Xu Z, Li Y, Wang Y, Lu J, Ma Y and Gan Z 2024 Chin. Phys. B 33 047405
[37] Xi X X, Pogrebnyakov A V, Xu S Y, Chen K, Cui Y, Maertz E C, Zhuang C G, Li Q, Lamborn D R, Redwing J M, Liu Z K, Soukiassian A, Schlom D G, Weng X J, Dickey E C, Chen Y B, Tian W, Pan X Q, Cybart S A and Dynes R C 2007 Physica C 456 22
[38] Ambegaokar V and Halperin B I 1969 Phys. Rev. Lett. 22 1364
[39] Iorio A, Crippa A, Turini B, Salimian S, Carrega M, Chirolli L, Zannier V, Sorba L, Strambini E, Giazotto F and Heun S 2023 Phys. Rev. Res. 5 033015
[40] Rosenthal P A, Beasley M R, Char K, Colclough M S and Zaharchuk G 1991 Appl. Phys. Lett. 59 3482
[1] Synchronization and firing mode transition of two neurons in a bilateral auditory system driven by a high-low frequency signal
Charles Omotomide Apata, Yi-Rui Tang(唐浥瑞), Yi-Fan Zhou(周祎凡), Long Jiang(蒋龙), and Qi-Ming Pei(裴启明). Chin. Phys. B, 2024, 33(5): 058704.
[2] Co-doped BaFe2As2 Josephson junction fabricated with a focused helium ion beam
Ziwen Chen(陈紫雯), Yan Zhang(张焱), Ping Ma(马平), Zhongtang Xu(徐中堂), Yulong Li(李宇龙), Yue Wang(王越), Jianming Lu(路建明), Yanwei Ma(马衍伟), and Zizhao Gan(甘子钊). Chin. Phys. B, 2024, 33(4): 047405.
[3] Light-modulated graphene-based φ0 Josephson junction and -φ0 to φ0 transition
Renxiang Cheng(程任翔), Miao Yu(于苗), Hong Wang(汪洪), Deliang Cao(曹德亮), Xingao Li(李兴鳌), Fenghua Qi(戚凤华), and Xingfei Zhou(周兴飞). Chin. Phys. B, 2024, 33(2): 027302.
[4] Enhanced topological superconductivity in an asymmetrical planar Josephson junction
Erhu Zhang(张二虎) and Yu Zhang(张钰). Chin. Phys. B, 2023, 32(4): 040307.
[5] Josephson vortices and intrinsic Josephson junctions in the layered iron-based superconductor Ca10(Pt3As8)((Fe0.9Pt0.1)2As2)5
Qiang-Tao Sui(随强涛) and Xiang-Gang Qui(邱祥冈). Chin. Phys. B, 2022, 31(9): 097403.
[6] Asymmetric Fraunhofer pattern in Josephson junctions from heterodimensional superlattice V5S8
Juewen Fan(范珏雯), Bingyan Jiang(江丙炎), Jiaji Zhao(赵嘉佶), Ran Bi(毕然), Jiadong Zhou(周家东), Zheng Liu(刘政), Guang Yang(杨光), Jie Shen(沈洁), Fanming Qu(屈凡明), Li Lu(吕力), Ning Kang(康宁), and Xiaosong Wu(吴孝松). Chin. Phys. B, 2022, 31(5): 057402.
[7] Ac Josephson effect in Corbino-geometry Josephson junctions constructed on Bi2Te3 surface
Yunxiao Zhang(张云潇), Zhaozheng Lyu(吕昭征), Xiang Wang(王翔), Enna Zhuo(卓恩娜), Xiaopei Sun(孙晓培), Bing Li(李冰), Jie Shen(沈洁), Guangtong Liu(刘广同), Fanming Qu(屈凡明), and Li Lü(吕力). Chin. Phys. B, 2022, 31(10): 107402.
[8] Josephson current in an irradiated Weyl semimetal junction
Han Wang(王含) and Rui Shen(沈瑞). Chin. Phys. B, 2021, 30(7): 077406.
[9] An easily-prepared impedance matched Josephson parametric amplifier
Ya-Peng Lu(卢亚鹏), Quan Zuo(左权), Jia-Zheng Pan(潘佳政), Jun-Liang Jiang(江俊良), Xing-Yu Wei(魏兴雨), Zi-Shuo Li(李子硕), Wen-Qu Xu(许问渠), Kai-Xuan Zhang(张凯旋), Ting-Ting Guo(郭婷婷), Shuo Wang(王硕), Chun-Hai Cao(曹春海), Wei-Wei Xu(许伟伟), Guo-Zhu Sun(孙国柱), and Pei-Heng Wu(吴培亨). Chin. Phys. B, 2021, 30(6): 068504.
[10] Fabrication and characterization of all-Nb lumped-element Josephson parametric amplifiers
Hang Xue(薛航), Zhirong Lin(林志荣), Wenbing Jiang(江文兵), Zhengqi Niu(牛铮琦), Kuang Liu(刘匡), Wei Peng(彭炜), and Zhen Wang(王镇). Chin. Phys. B, 2021, 30(6): 068503.
[11] Controlling chaos and supressing chimeras in a fractional-order discrete phase-locked loop using impulse control
Karthikeyan Rajagopal, Anitha Karthikeyan, and Balamurali Ramakrishnan. Chin. Phys. B, 2021, 30(12): 120512.
[12] Anomalous Josephson current in quantum anomalous Hall insulator-based superconducting junctions with a domain wall structure
Qing Yan(闫青), Yan-Feng Zhou(周彦峰), Qing-Feng Sun(孙庆丰). Chin. Phys. B, 2020, 29(9): 097401.
[13] Quadruple-stacked Nb/NbxSi1-x/Nb Josephson junctions for large-scale array application
Wenhui Cao(曹文会), Jinjin Li(李劲劲), Lanruo Wang(王兰若), Yuan Zhong(钟源), Qing Zhong(钟青). Chin. Phys. B, 2020, 29(6): 067404.
[14] Nonlinear resonances phenomena in a modified Josephson junction model
Pernel Nguenang, Sandrine Takam Mabekou, Patrick Louodop, Arthur Tsamouo Tsokeng, and Martin Tchoffo. Chin. Phys. B, 2020, 29(12): 120501.
[15] Development of 0.5-V Josephson junction array devices for quantum voltage standards
Lanruo Wang(王兰若), Jinjin Li(李劲劲), Wenhui Cao(曹文会), Yuan Zhong(钟源), Zhonghua Zhang(张钟华). Chin. Phys. B, 2019, 28(6): 068501.
No Suggested Reading articles found!