Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(8): 087504    DOI: 10.1088/1674-1056/ad4a3a
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Magnetic domain structures in ultrathin Bi2Te3/CrTe2 heterostructures

Tirui Xia(夏体瑞)1, Xiaotian Yang(杨笑天)1, Yifan Zhang(张逸凡)2,3, Xinqi Liu(刘馨琪)1,3, Xinyu Cai(蔡新雨)1, Chang Liu(刘畅)4, Qi Yao(姚岐)1,3,†, Xufeng Kou(寇煦丰)2,3,‡, and Wenbo Wang(王文波)1,3,§
1 School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China;
2 School of Information Science and Technology, ShanghaiTech University, Shanghai 201210, China;
3 ShanghaiTech Laboratory for Topological Physics, ShanghaiTech University, Shanghai 201210, China;
4 Department of Materials Science, Fudan University, Shanghai 200438, China
Abstract  Chromium tellurium compounds are important two-dimensional van der Waals ferromagnetic materials with high Curie temperature and chemical stability in air, which is promising for applications in spintronic devices. Here, high-quality spin-orbital-torque (SOT) device, Bi$_{2}$Te$_{3}$/CrTe$_{2}$ heterostructure was epitaxially grown on Al$_{2}$O$_{3 }$ (0001) substrates. Anomalous Hall measurements indicate the existence of strong ferromagnetism in this device with the CrTe$_{2}$ thickness down to 10 nm. In order to investigate its micromagnetic structure, cryogenic magnetic force microscope (MFM) was utilized to measure the magnetic domain evolutions at various temperatures and magnetic fields. The virgin domain state of the device shows a worm-like magnetic domain structure with the size around 0.6 μm-0.8 μm. Larger irregular-shape magnetic domains (>1 μm) can be induced and pinned, after the field is increased to coercive field and ramped back to low fields. The temperature-dependent MFM signals exhibit a nice mean-field-like ferromagnetic transition with Curie temperature around 201.5 K, indicating a robust ferromagnetic ordering. Such a device can be potentially implemented in future magnetic memory technology.
Keywords:  CrTe$_{2}$      magnetic domain      magnetic force microscopy  
Received:  27 February 2024      Revised:  09 May 2024      Accepted manuscript online:  13 May 2024
PACS:  75.70.-i (Magnetic properties of thin films, surfaces, and interfaces)  
  75.60.-d (Domain effects, magnetization curves, and hysteresis)  
  75.47.-m (Magnetotransport phenomena; materials for magnetotransport)  
  85.70.-w (Magnetic devices)  
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2022YFA1403000), the National Natural Science Foundation of China (Grant No. 12374161), and the Fund from the Science and Technology Commission of Shanghai Municipality (Grant No. 21PJ410800). X. F. Kou acknowledges the support from the National Natural Science Foundation of China (Grant No. 92164104), the RisingStar Program of Shanghai (Grant No. 21QA1406000), and the Open Fund of State Key Laboratory of Infrared Physics.
Corresponding Authors:  Qi Yao, Xufeng Kou, Wenbo Wang     E-mail:  yaoqi@shanghaitech.edu.cn;kouxf@shanghaitech.edu.cn;wangwb1@shanghaitech.edu.cn

Cite this article: 

Tirui Xia(夏体瑞), Xiaotian Yang(杨笑天), Yifan Zhang(张逸凡), Xinqi Liu(刘馨琪), Xinyu Cai(蔡新雨), Chang Liu(刘畅), Qi Yao(姚岐), Xufeng Kou(寇煦丰), and Wenbo Wang(王文波) Magnetic domain structures in ultrathin Bi2Te3/CrTe2 heterostructures 2024 Chin. Phys. B 33 087504

[1] Gong C, Li L, Li Z L, Stern A, Xia Y, Cao T, Bao W, Wang C Z, Wang Y, Qiu Z Q, Cava R J, Louie S G, Xia J and Zhang X 2017 Nature 546 265
[2] Huang B V, Clark G, Navarro-Moratalla E, Klein D R, Cheng R, Seyler K L, Zhong D, Schmidgall E, McGuire M A, Cobden D H, Yao W, Xiao D, Jarillo-Herrero P and Xu X D 2017 Nature 546 270
[3] Geim A K and Grigorieva I V 2013 Nature 499 419
[4] Geisenhof F R, Winterer F, Seiler A M, Lenz J, Xu T Y, Zhang F and Weitz R T 2021 Nature 598 53
[5] Cao Y, Fatemi V, Fang S, Watanabe K, Taniguchi T, Kaxiras E and Jarillo-Herrero P 2018 Nature 556 43
[6] Park J M, Cao Y, Watanabe K, Taniguchi T and Jarillo-Herrero P 2021 Nature 590 249
[7] Serlin M, Tschirhart C L, Polshyn H, Zhang Y, Zhu J, Watanabe K, Taniguchi T, Balents L and Young A F 2020 Science 367 900
[8] Wu H, Zhang W, Yang L, Wang J, Li J, Li L, Gao Y, Zhang L, Du J, Shu H and Chang H 2021 Nat. Commun. 12 5688
[9] Zhao D P, Zhang L G, Malik I A, Liao M H, Cui W Q, Cai X Q, Zheng C, Li L X, Hu X P, Zhang D, Zhang J X, Chen X, Jiang W J and Xue Q K 2018 Nano Research 11 3116
[10] Wang M S, Kang L X, Su J W, Zhang L M, Dai H W, Cheng H, Han X T, Zhai T Y, Liu Z and Han J B 2020 Nanoscale 12 16427
[11] Huang M, Wang S, Wang Z, Liu P, Xiang J, Feng C, Wang X, Zhang Z, Wen Z, Xu H, Yu G, Lu Y, Zhao W, Yang S A, Hou D and Xiang B 2021 ACS Nano 15 9759
[12] Purbawati A, Coraux J, Vogel J, Hadj-Azzem A, Wu N, Bendiab N, Jegouso D, Renard J, Marty L, Bouchiat V, Sulpice A, Aballe L, Foerster M, Genuzio F, Locatelli A, Mentes T, Han Z, Sun X, Nunez-Regueiro M and Rougemaille N 2020 ACS Appl. Mater. Interfaces 12 30702
[13] Sun X, Li W, Wang X, Sui Q, Zhang T, Wang Z, Liu L, Li D, Feng S, Zhong S, Wang H, Bouchiat V, Nunez Regueiro M, Rougemaille N, Coraux J, Purbawati A, Hadj-Azzem A, Wang Z, Dong B, Wu X, Yang T, Yu G, Wang B, Han Z, Han X and Zhang Z 2020 Nano Research 13 3358
[14] Fabre F, Finco A, Purbawati A, Hadj-Azzem A, Rougemaille N, Coraux J, Philip I and Jacques V 2021 Phys. Rev. Mater. 5 034008
[15] Xian J J, Wang C, Nie J H, Li R, Han M J, Lin J H, Zhang W H, Liu Z Y, Zhang Z M, Miao M P, Yi Y F, Wu S W, Chen X D, Han J B, Xia Z C, Ji W and Fu Y S 2022 Nat. Commun. 13 257
[16] Zhang X, Lu Q, Liu W, Niu W Q, Sun J B, Cook J, Vaninger M, Miceli P F, Singh D J, Lian S W, Chang T R, He X, Du J, He L, Zhang R, Bian G and Xu Y 2021 Nat. Commun. 12 2492
[17] Wen Y, Liu Z H, Zhang Y, Xia C X, Zhai B X, Zhang X H, Zhai G H, Shen C, He P, Cheng R Q, Yin L, Yao Y Y, Sendeku M G, Wang Z X, Ye X B, Liu C S, Jiang C, Shan C X, Long Y W and He J 2020 Nano Lett. 20 3130
[18] Zhong Y, Peng C, Huang H L, Guan D D, Hwang J, Hsu K H, Hu Y, Jia C J, Moritz B, Lu D H, Lee J S, Jia J F, Devereaux T P, Mo S K and Shen Z X 2023 Nat. Commun. 14 5340
[19] Zhang C H, Liu C, Zhang J W, Yuan Y Y, Wen Y, Li Y, Zheng D X, Zhang Q, Hou Z P, Yin G, Liu K, Peng Y and Zhang X X 2023 Adv. Mater. 35 2205967
[20] Li B L, Deng X, Shu W N, Cheng X, Qian Q, Wan Z, Zhao B, Shen X H, Wu R X, Shi S, Zhang H M, Zhang Z C, Yang X D, Zhang J W, Zhong M Z, Xia Q L, Li J, Liu Y, Liao L, Ye Y, Dai L, Peng Y, Li B and Duan X D 2022 Mater. Today 57 66
[21] Zhang L Z, Zhang A L, He X D, Ben X W, Xiao Q L, Lu W L, Chen F, Feng Z J, Cao S X, Zhang J C and Ge J Y 2020 Phys. Rev. B 101 214413
[22] Tang B J, Wang X W, Han M J, Xu X D, Zhang Z W, Zhu C, Cao X, Yang Y M, Fu Q D, Yang J Q, Li X J, Gao W B, Zhou J D, Lin J H and Liu Z 2022 Nat. Electron. 5 224
[23] Chen C, Chen X, Wu C, Wang X, Ping Y, Wei X, Zhou X, Lu J, Zhu L, Zhou J, Zhai T and Han J 2022 Adv. Mater. 34 2107512
[24] Zhu W, Ma Z W, Yan J, Zheng G H, Cheng L, Xu X L, Meng Z, Shen L, An K Y, Zhou Ch, Qu Zh, Luo X, Sun Y P, Zhang Z J and Sheng Z G 2020 J. Magn. Magn. Mater. 512 167019
[25] Wang Y, Yan, J, Li J, Wang S, Song M, Song J, Li Z, Chen K, Qin Y, Ling L, Du H, Cao L, Luo X, Xiong Y and Sun Y 2019 Phys. Rev. B 100 024434
[26] Ma X, Huang M, Wang S S, Liu P, Zhang Y, Lu Y L and Xiang B 2023 ACS Appl. Electron. Mater. 5 2838
[27] Ren Q D, Lai K, Chen J H, Yu X X and Dai J Y 2023 Chin. Phys. B 32 027201
[28] Yuan Z Y, Yang F Z, Lv B Q, Huang Y B, Qian T, Xu J P and Ding H 2024 Chin. Phys. B 33 026802
[29] Yang H, Valenzuela S O, Chshiev M, Couet S, Dieny B, Dlubak B, Fert A, Garello K, Jamet M, Jeong D E, Lee K, Lee T, Martin M B, Kar G S, Seneor P, Shin H J and Roche S 2022 Nature 606 663
[30] Liu X Q, Huang P Y, XIA Y Y Y, Gao L, Liao Li Y, Cui B S, Backes D, van der Laan G, Hesjedal T, Ji Y C, Chen P, Zhang Y F, Wu F, Wang M X, Zhang J W, Yu G Q, Song C, Chen Y L, Liu Z K, Yang Y M, Peng Y, Li G, Yao Q and Kou X F 2023 Adv. Funct. Mater. 33 2304454
[31] Ou Y, Yanez W, Xiao R, Stanley M, Ghosh S, Zheng B, Jiang W, Huang Y S, Pillsbury T, Richardella A, Liu C X, Low T, Crespi V H, Mkhoyan K A and Samarth N 2022 Nat. Commun. 13 2972
[32] Zhang X Q, Ambhire S C, Lu Q S, Niu W, Cook J, Jiang J D S, Hong D S, Alahmed L, He L, Zhang R, Xu Y B, Zhang S S L, Li P and Bian G 2021 ACS Nano. 15 15710
[33] Chen J S, Wang L J, Zhang M, Zhou L, Zhang R N, Jin L P, Wang X S, Qin H L, Qiu Y, Mei J W, Ye F, Xi B, He H T, Li B and Wang G 2019 Nano Lett. 19 6144
[34] Jeon J H, Na H R, Kim H, Lee S, Song S, Kim J, Park S, Kim J, Noh H, Kim G, Jerng S K and Chun S H 2022 ACS Nano 16 8974
[35] Wang W B, Mundy J A, Brooks C M, Moyer J A, Holtz M E, Muller D A, Schlom D G and Wu W D 2017 Phys. Rev. B 95 134443
[36] Lau Y C, Betto D, Rode K, Coey J M D and Stamenov P 2016 Nat. Nanotechnol. 11 758
[37] Fukami S, Zhang C L, DuttaGupta S, Kurenkov A and Ohno H 2016 Nat. Mater. 15 535
[38] Yu G Q, Upadhyaya P, Fan Y B, Alzate J G, Jiang W J, Wong K L, Takei S, Bender S A, Chang L T, Jiang Y, Lang M R, Tang J S, Wang Y, Tserkovnyak Y, Amiri P K and Wang K L 2014 Nat. Nanotechnol. 9 548
[39] Liu L, Qin Q, Lin W N, Li C, Xie Q, He S, Shu X, Zhou C H, Lim Z, Yu J, Lu W, Li M, Yan X B, Pennycook S J and Chen J S 2019 Nat. Nanotechnol. 14 939
[40] Liang Y H, Yi D, Nan T X, Liu S S, Zhao L, Zhang Y J, Chen H T, Xu T, Dai M Y, Hu J M, Xu B, Shi J, Jiang W J, Yu R and Lin Y H 2023 Nat. Commun. 14 5458
[1] Effect of CeO2 doping on the coercivity of 2:17 type SmCo magnets
Xiao-Lei Gao(高晓磊), Zhuang Liu(刘壮), Guang-Qing Wang(王广庆), Chao-Qun Zhu(竺超群), Wen-Xin Cheng(程文鑫), Ming-Xiao Zhang(张明晓), Xin-Cai Liu(刘新才), Ren-Jie Chen(陈仁杰), and A-Ru Yan(闫阿儒). Chin. Phys. B, 2023, 32(9): 097504.
[2] Thickness-dependent magnetic properties in Pt/[Co/Ni]n multilayers with perpendicular magnetic anisotropy
Chunjie Yan(晏春杰), Lina Chen(陈丽娜), Kaiyuan Zhou(周恺元), Liupeng Yang(杨留鹏), Qingwei Fu(付清为), Wenqiang Wang(王文强), Wen-Cheng Yue(岳文诚), Like Liang(梁力克), Zui Tao(陶醉), Jun Du(杜军),Yong-Lei Wang(王永磊), and Ronghua Liu(刘荣华). Chin. Phys. B, 2023, 32(1): 017503.
[3] Asymmetric dynamic behaviors of magnetic domain wall in trapezoid-cross-section nanostrip
Xiao-Ping Ma(马晓萍), Hong-Guang Piao(朴红光), Lei Yang(杨磊), Dong-Hyun Kim, Chun-Yeol You, Liqing Pan(潘礼庆). Chin. Phys. B, 2020, 29(9): 097502.
[4] Field-variable magnetic domain characterization of individual 10 nm Fe3O4 nanoparticles
Zheng-Hua Li(李正华), Xiang Li(李翔), Wei Lu(陆伟). Chin. Phys. B, 2019, 28(7): 077504.
[5] Spin switching in antiferromagnets using Néel-order spin-orbit torques
P Wadley, K W Edmonds. Chin. Phys. B, 2018, 27(10): 107201.
[6] Modeling of the loading path dependent magnetomechanical behavior of Galfenol alloy
Hui Jiang(江慧), Jie Zhu(朱洁). Chin. Phys. B, 2017, 26(3): 037503.
[7] Evolution of magnetic domain structure of martensite in Ni-Mn-Ga films under the interplay of the temperature and magnetic field
Xie Ren (谢忍), Wei Jun (韦俊), Liu Zhong-Wu (刘仲武), Tang Yan-Mei (唐妍梅), Tang Tao (唐涛), Tang Shao-Long (唐少龙), Du You-Wei (都有为). Chin. Phys. B, 2014, 23(6): 068103.
[8] Composition influence on the microstructures and magnetic properties of FePt thin films
Liu Li-Wang (刘立旺), Dang Hong-Gang (党红刚), Sheng Wei (盛伟), Wang Ying (王颖), Cao Jiang-Wei (曹江伟), Bai Jian-Min (白建民), Wei FuLin (魏福林). Chin. Phys. B, 2013, 22(4): 047503.
[9] Magnetic domain structures of precipitation-hardened SmCo 2:17-type sintered magnets: Heat treatment effect
Li Xiu-Mei(李岫梅), Fang Yi-Kun(方以坤), Guo Zhao-Hui(郭朝晖), Liu Tao(刘涛), Guo Yong-Quan(郭永权), Li Wei(李卫), and Han Bao-Shan(韩宝善). Chin. Phys. B, 2008, 17(6): 2281-2287.
[10] Domain structures of Nd13Fe80B7 magnets during HDDR process
Zhang Zhen-Rong (张臻蓉), Pang Zhi-Yong (庞智勇), Zhao Yi-Min (赵义敏), Zhang Zheng-Yi (张正义), Han Sheng-Hao (韩圣浩), Han Bao-Shan (韩宝善). Chin. Phys. B, 2003, 12(11): 1305-1309.
[11] Investigation of the magnetic domain structure of (PtCoPt)/Si multilayers by magnetic force microscopy
Zhang Zhen-Rong (张臻蓉), Liu Hong (刘洪), Han Bao-Shan (韩宝善). Chin. Phys. B, 2002, 11(6): 629-634.
[1] Tuo Li(李拓), Ke Cheng(程可), Zheng Peng(彭政), Hui Yang(杨晖), and Meiying Hou(厚美瑛). Intruder trajectory tracking in a three-dimensional vibration-driven granular system: Unveiling the mechanism of the Brazil nut effect[J]. Chin. Phys. B, 2023, 32(10): 104501 .
[2] Zhengwen Wang(王政文), Yingzhuo Han(韩英卓), Kenji Watanabe, Takashi Taniguchi, Yuhang Jiang(姜宇航), and Jinhai Mao(毛金海). Field induced Chern insulating states in twisted monolayer-bilayer graphene[J]. Chin. Phys. B, 2024, 33(6): 67301 -067301 .
[3] Fuyu Tian(田伏钰), Muhammad Faizan, Xin He(贺欣), Yuanhui Sun(孙远慧), and Lijun Zhang(张立军). Moiré superlattices arising from growth induced by screw dislocations in layered materials[J]. Chin. Phys. B, 2024, 33(7): 77403 -077403 .
[4] Wen-Chuang Shang(商文创), Yi-Ning Han(韩熠宁), Shimpei Endo, and Chao Gao(高超). Topological phases and edge modes of an uneven ladder[J]. Chin. Phys. B, 2024, 33(8): 80202 -080202 .
[5] Ao Wang(汪澳), Yu-Zhen Wei(魏玉震), Min Jiang(姜敏), Yong-Cheng Li(李泳成), Hong Chen(陈虹), and Xu Huang(黄旭). Effects of quantum noise on teleportation of arbitrary two-qubit state via five-particle Brown state[J]. Chin. Phys. B, 2024, 33(8): 80307 -080307 .
[6] Pu Wang(王璞), Zhong-Yan Li(李忠艳), and Hui-Xian Meng(孟会贤). Quantum block coherence with respect to projective measurements[J]. Chin. Phys. B, 2024, 33(8): 80308 -080308 .
[7] Yikang Chen(陈奕康) and Zong-Hong Zhu(朱宗宏). Detecting short-term gravitational waves from post-merger hyper-massive neutron stars with a kilohertz detector[J]. Chin. Phys. B, 2024, 33(8): 80401 -080401 .
[8] Jia-Yi Zhu(朱佳仪), Zhi-Min He(何志民), Cheng Huang(黄成), Jun Zeng(曾峻), Hui-Chuan Lin(林惠川), Fu-Chang Chen(陈福昌), Chao-Qun Yu(余超群), Yan Li(李燕), Yong-Tao Zhang(张永涛), Huan-Ting Chen(陈焕庭), and Ji-Xiong Pu(蒲继雄). Deep learning-assisted common temperature measurement based on visible light imaging[J]. Chin. Phys. B, 2024, 33(8): 80701 -080701 .
[9] C. S. Gomes, F. E. Jorge, and A. Canal Neto. All-electron basis sets for H to Xe specific for ZORA calculations: Applications in atoms and molecules[J]. Chin. Phys. B, 2024, 33(8): 83101 -083101 .
[10] Jialing Yang(杨嘉玲), Aoqian Shi(史奥芊), Yuchen Peng(彭宇宸), Peng Peng(彭鹏), and Jianjun Liu(刘建军). Interface state-based bound states in continuum and below-continuum-resonance modes with high-Q factors in the rotational periodic system[J]. Chin. Phys. B, 2024, 33(8): 84206 -084206 .