Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(8): 080307    DOI: 10.1088/1674-1056/ad3dc8
GENERAL Prev   Next  

Effects of quantum noise on teleportation of arbitrary two-qubit state via five-particle Brown state

Ao Wang(汪澳)1, Yu-Zhen Wei(魏玉震)3, Min Jiang(姜敏)1,2,†, Yong-Cheng Li(李泳成)1,‡, Hong Chen(陈虹)1, and Xu Huang(黄旭)1
1 School of Electronics & Information Engineering, Soochow University, Suzhou 215006, China;
2 Key Laboratory of System Control and Information Processing, Ministry of Education, Shanghai 200240, China;
3 School of Information Engineering, Huzhou University, Huzhou 313000, China
Abstract  We propose a new protocol for quantum teleportation (QT) which adopts the Brown state as the quantum channel. This work focuses on the teleportation of a single unknown two-qubit state via a Brown state channel in an ideal environment. To validate the effectiveness of our proposed scheme, we conduct experiments by using the quantum circuit simulator Quirk. Furthermore, we investigate the effects of four noisy channels, namely, the phase damping noise, the bit-flip noise, the amplitude damping noise, and the phase-flip noise. Notably, we employ Monte Carlo simulation to elucidate the fidelity density under various noise parameters. Our analysis demonstrates that the fidelity of the protocol in a noisy environment is influenced significantly by the amplitude of the initial state and the noise factor.
Keywords:  quantum communication      Brown state      fidelity  
Received:  06 January 2024      Revised:  06 April 2024      Accepted manuscript online:  12 April 2024
PACS:  03.67.Hk (Quantum communication)  
  03.67.Dd (Quantum cryptography and communication security)  
  42.50.Lc (Quantum fluctuations, quantum noise, and quantum jumps)  
  03.67.-a (Quantum information)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 61873162) and Fund from the Key Laboratory of System Control and Information Processing, Ministry of Education, China (Grant No. Scip20240106).
Corresponding Authors:  Min Jiang, Yong-Cheng Li     E-mail:  jiangmin0629@163.com;ycli@suda.edu.cn

Cite this article: 

Ao Wang(汪澳), Yu-Zhen Wei(魏玉震), Min Jiang(姜敏), Yong-Cheng Li(李泳成), Hong Chen(陈虹), and Xu Huang(黄旭) Effects of quantum noise on teleportation of arbitrary two-qubit state via five-particle Brown state 2024 Chin. Phys. B 33 080307

[1] Jozsa R and Linden N 2003 Proc. Math. Phys. Eng. Sci. 459 2011
[2] Wang Y Z 2012 Stat. Sci. 27 373
[3] Ban M 2001 Opt. Commun. 189 97
[4] Jiang X Q, Xue S, Tang J, Huang P and Zeng G 2024 Quantum Sci. Technol. 9 025008
[5] Zhou Y H, Yu Z W, Li A, Hu X L and Jiang C 2018 Sci. Rep. 8 4115
[6] Bennett C H, Brassard G, Crépeau C, Jozsa R, Peres A and Wootters W K 1993 Phys. Rev. Lett. 70 1895
[7] Zhang H, Zhang C, Hu X M, Liu B H, Huang Y F, Li C F and Guo G C 2019 Phys. Rev. A 99 052301
[8] Joo J, Park Y J, Oh S and Kim J 2003 New J. Phys. 5 136
[9] Agrawal P and Pati A 2006 Phys. Rev. A 74 5
[10] Xu K, Kuang H Y and Guo Y 2013 Int. J. Theor. Phys. 52 3432
[11] Yan F L and Yan T 2010 Sci. Bull. 55 902
[12] Cao H J and Wang H S 2012 Int. J. Theor. Phys. 51 1448
[13] Brassard G and Methot A A 2010 Found. Phys. 40 463
[14] Furusawa A, Sorensen J L, Braunstein S L, Fuchs C A, Kimble H J and Polzik E S 1998 Science 282 706
[15] Brown I D K, Stepney S, Sudbery A and Braunstein S L 2005 J. Phys. A: Math. Gen. 38 1119
[16] Muralidharan S and Panigrahi P K 2007 Phys. Rev. A 77 032321
[17] Chen X B, Ma S Y, Su Y, Zhang R and Yang Y X 2012 Quantum Inf. Process. 11 1653
[18] Fang S H and Jiang M 2017 Int. J. Theor. Phys. 56 1530
[19] Dong T and Ma S Y 2018 Int. J. Theor. Phys. 57 3563
[20] Wang N N and Ma S Y 2020 Int. J. Theor. Phys. 59 2816
[21] Hu T, Yang Q, Xue K, Wang G, Zhang Y, Li X and Ren H 2016 Quantum Inf. Process. 16 21
[22] Banaszek K 2001 Phys. Rev. Lett. 86 1366
[23] Oh S, Lee S and Lee H W 2002 Phys. Rev. A 66 052318
[24] Fortes R and Rigolin G 2015 Phys. Rev. A 92 012338
[25] He L M, Wang N and Zhou P 2020 Int. J. Theor. Phys. 59 1081
[26] Seida C, El Allati A, Metwally N and Hassouni Y 2021 Eur. Phys. J. D 75 170
[27] Mastriani M, Iyengar S S and Kumar L 2021 SN Comput. Sci. 2 29
[28] Bengtsson I and Zyczkowski K 2006 Geometry of Quantum States: An Introduction to Quantum Entanglement (Cambridge University Press)
[29] Kang S Y, Chen X B and Yang Y X 2013 Int. J. Theor. Phys. 52 3413
[1] Discrete multi-step phase hologram for high frequency acoustic modulation
Meng-Qing Zhou(周梦晴), Zhao-Xi Li(李照希), Yi Li(李怡), Ye-Cheng Wang(王业成), Juan Zhang(张娟), Dong-Dong Chen(谌东东), Yi Quan(全熠), Yin-Tang Yang(杨银堂), and Chun-Long Fei(费春龙). Chin. Phys. B, 2024, 33(1): 014303.
[2] Quantitative determination of the critical points of Mott metal—insulator transition in strongly correlated systems
Yuekun Niu(牛月坤), Yu Ni(倪煜), Jianli Wang(王建利), Leiming Chen(陈雷鸣), Ye Xing(邢晔), Yun Song(宋筠), and Shiping Feng(冯世平). Chin. Phys. B, 2024, 33(1): 017102.
[3] High-fidelity topological quantum state transfersin a cavity-magnon system
Xi-Xi Bao(包茜茜), Gang-Feng Guo(郭刚峰), Xu Yang(杨煦), and Lei Tan(谭磊). Chin. Phys. B, 2023, 32(8): 080301.
[4] Faithful and efficient hyperentanglement purification for spatial-polarization-time-bin photon system
Fang-Fang Du(杜芳芳), Gang Fan(樊钢), Yi-Ming Wu(吴一鸣), and Bao-Cang Ren(任宝藏). Chin. Phys. B, 2023, 32(6): 060304.
[5] Engineering topological state transfer in four-period Su-Schrieffer-Heeger chain
Xi-Xi Bao(包茜茜), Gang-Feng Guo(郭刚峰), and Lei Tan(谭磊). Chin. Phys. B, 2023, 32(2): 020301.
[6] Performance of entanglement-assisted quantum codes with noisy ebits over asymmetric and memory channels
Ji-Hao Fan(樊继豪), Pei-Wen Xia(夏沛文), Di-Kang Dai(戴迪康), and Yi-Xiao Chen(陈一骁). Chin. Phys. B, 2023, 32(12): 120304.
[7] Deterministic remote preparation of multi-qubit equatorial states through dissipative channels
Liu-Yong Cheng(程留永), Shi-Feng Zhang(张世凤), Zuan Meng(孟钻), Hong-Fu Wang(王洪福), and Shou Zhang(张寿). Chin. Phys. B, 2023, 32(11): 110307.
[8] Purification in entanglement distribution with deep quantum neural network
Jin Xu(徐瑾), Xiaoguang Chen(陈晓光), Rong Zhang(张蓉), and Hanwei Xiao(肖晗微). Chin. Phys. B, 2022, 31(8): 080304.
[9] Universal order-parameter and quantum phase transition for two-dimensional q-state quantum Potts model
Yan-Wei Dai(代艳伟), Sheng-Hao Li(李生好), and Xi-Hao Chen(陈西浩). Chin. Phys. B, 2022, 31(7): 070502.
[10] Experimental realization of quantum controlled teleportation of arbitrary two-qubit state via a five-qubit entangled state
Xiao-Fang Liu(刘晓芳), Dong-Fen Li(李冬芬), Yun-Dan Zheng(郑云丹), Xiao-Long Yang(杨小龙), Jie Zhou(周杰), Yu-Qiao Tan(谭玉乔), and Ming-Zhe Liu(刘明哲). Chin. Phys. B, 2022, 31(5): 050301.
[11] Self-error-rejecting multipartite entanglement purification for electron systems assisted by quantum-dot spins in optical microcavities
Yong-Ting Liu(刘永婷), Yi-Ming Wu(吴一鸣), and Fang-Fang Du(杜芳芳). Chin. Phys. B, 2022, 31(5): 050303.
[12] Alternative non-Gaussianity measures for quantum states based on quantum fidelity
Cheng Xiang(向成), Shan-Shan Li(李珊珊), Sha-Sha Wen(文莎莎), and Shao-Hua Xiang(向少华). Chin. Phys. B, 2022, 31(3): 030306.
[13] Channel parameters-independent multi-hop nondestructive teleportation
Hua-Yang Li(李华阳), Yu-Zhen Wei(魏玉震), Yi Ding(丁祎), and Min Jiang(姜敏). Chin. Phys. B, 2022, 31(2): 020302.
[14] Analysis of atmospheric effects on the continuous variable quantum key distribution
Tao Liu(刘涛), Shuo Zhao(赵硕), Ivan B. Djordjevic, Shuyu Liu(刘舒宇), Sijia Wang(王思佳), Tong Wu(吴彤), Bin Li(李斌), Pingping Wang(王平平), and Rongxiang Zhang(张荣香). Chin. Phys. B, 2022, 31(11): 110303.
[15] Passively stabilized single-photon interferometer
Hai-Long Liu(刘海龙), Min-Jie Wang(王敏杰), Jia-Xin Bao(暴佳鑫), Chao Liu(刘超), Ya Li(李雅), Shu-Jing Li(李淑静), and Hai Wang(王海). Chin. Phys. B, 2022, 31(11): 110306.
[1] Tuo Li(李拓), Ke Cheng(程可), Zheng Peng(彭政), Hui Yang(杨晖), and Meiying Hou(厚美瑛). Intruder trajectory tracking in a three-dimensional vibration-driven granular system: Unveiling the mechanism of the Brazil nut effect[J]. Chin. Phys. B, 2023, 32(10): 104501 .
[2] Zhengwen Wang(王政文), Yingzhuo Han(韩英卓), Kenji Watanabe, Takashi Taniguchi, Yuhang Jiang(姜宇航), and Jinhai Mao(毛金海). Field induced Chern insulating states in twisted monolayer-bilayer graphene[J]. Chin. Phys. B, 2024, 33(6): 67301 -067301 .
[3] Fuyu Tian(田伏钰), Muhammad Faizan, Xin He(贺欣), Yuanhui Sun(孙远慧), and Lijun Zhang(张立军). Moiré superlattices arising from growth induced by screw dislocations in layered materials[J]. Chin. Phys. B, 2024, 33(7): 77403 -077403 .
[4] Wen-Chuang Shang(商文创), Yi-Ning Han(韩熠宁), Shimpei Endo, and Chao Gao(高超). Topological phases and edge modes of an uneven ladder[J]. Chin. Phys. B, 2024, 33(8): 80202 -080202 .
[5] Pu Wang(王璞), Zhong-Yan Li(李忠艳), and Hui-Xian Meng(孟会贤). Quantum block coherence with respect to projective measurements[J]. Chin. Phys. B, 2024, 33(8): 80308 -080308 .
[6] Yikang Chen(陈奕康) and Zong-Hong Zhu(朱宗宏). Detecting short-term gravitational waves from post-merger hyper-massive neutron stars with a kilohertz detector[J]. Chin. Phys. B, 2024, 33(8): 80401 -080401 .
[7] Jia-Yi Zhu(朱佳仪), Zhi-Min He(何志民), Cheng Huang(黄成), Jun Zeng(曾峻), Hui-Chuan Lin(林惠川), Fu-Chang Chen(陈福昌), Chao-Qun Yu(余超群), Yan Li(李燕), Yong-Tao Zhang(张永涛), Huan-Ting Chen(陈焕庭), and Ji-Xiong Pu(蒲继雄). Deep learning-assisted common temperature measurement based on visible light imaging[J]. Chin. Phys. B, 2024, 33(8): 80701 -080701 .
[8] C. S. Gomes, F. E. Jorge, and A. Canal Neto. All-electron basis sets for H to Xe specific for ZORA calculations: Applications in atoms and molecules[J]. Chin. Phys. B, 2024, 33(8): 83101 -083101 .
[9] Jialing Yang(杨嘉玲), Aoqian Shi(史奥芊), Yuchen Peng(彭宇宸), Peng Peng(彭鹏), and Jianjun Liu(刘建军). Interface state-based bound states in continuum and below-continuum-resonance modes with high-Q factors in the rotational periodic system[J]. Chin. Phys. B, 2024, 33(8): 84206 -084206 .
[10] Qianghua Rao(饶强华), Hui Chen(陈辉), Sanqiu Liu(刘三秋), and Xiaochang Chen(陈小昌). Ion acoustic solitary waves in an adiabatic dusty plasma: Roles of superthermal electrons, ion loss and ionization[J]. Chin. Phys. B, 2024, 33(8): 85201 -085201 .