Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(8): 086105    DOI: 10.1088/1674-1056/ad4989
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Quasi-plastic deformation mechanisms and inverse Hall-Petch relationship in nanocrystalline boron carbide under compression

Zhen Yue(岳珍), Jun Li(李君)†, Lisheng Liu(刘立胜)‡, and Hai Mei(梅海)
Hubei Key Laboratory of Theory and Application of Advanced Materials Mechanics, Wuhan University of Technology, Wuhan 430070, China
Abstract  Grain boundaries (GBs) play a significant role in the deformation behaviors of nanocrystalline ceramics. Here, we investigate the compression behaviors of nanocrystalline boron carbide (nB$_{4}$C) with varying grain sizes using molecular dynamics simulations with a machine-learning force field. The results reveal quasi-plastic deformation mechanisms in nB$_{4}$C: GB sliding, intergranular amorphization and intragranular amorphization. GB sliding arises from the presence of soft GBs, leading to intergranular amorphization. Intragranular amorphization arises from the interaction between grains with unfavorable orientations and the softened amorphous GBs, and finally causes structural failure. Furthermore, nB$_{4}$C models with varying grain sizes from 4.07 nm to 10.86 nm display an inverse Hall-Petch relationship due to the GB sliding mechanism. A higher strain rate in nB$_{4}$C often leads to a higher yield strength, following a $2/3$ power relationship. These deformation mechanisms are critical for the design of ceramics with superior mechanical properties.
Keywords:  nanocrystalline boron carbide      compression      grain boundary sliding      amorphization      inverse Hall-Petch behavior  
Received:  21 December 2023      Revised:  10 April 2024      Accepted manuscript online: 
PACS:  61.72.Mm (Grain and twin boundaries)  
  62.20.F- (Deformation and plasticity)  
  02.70.Ns (Molecular dynamics and particle methods)  
Fund: The authors acknowledge the support from the National Natural Science Foundation of China (Grant No. 11972267).
Corresponding Authors:  Jun Li, Lisheng Liu     E-mail:  jun_li@whut.edu.cn;liulish@whut.edu.cn

Cite this article: 

Zhen Yue(岳珍), Jun Li(李君), Lisheng Liu(刘立胜), and Hai Mei(梅海) Quasi-plastic deformation mechanisms and inverse Hall-Petch relationship in nanocrystalline boron carbide under compression 2024 Chin. Phys. B 33 086105

[1] Xu H, Ji W, Jiang J, Liu J, Wang H, Zhang F, Yu R, Tu B, Zhang J, Zou J, Wang W, Wu J and Fu Z 2023 Nat. Commun. 14 4889
[2] Madhav Reddy K, Guo J J, Shinoda Y, Fujita T, Hirata A, Singh J P, McCauley J W and Chen M W 2012 Nat. Commun. 3 1052
[3] Zhang S, Sun D, Fu Y and Du H 2003 Surf. Coatings Technol. 167 113
[4] Guo D and An Q 2019 Int. J. Plast. 121 218
[5] Li J and An Q 2023 J. Eur. Ceram. Soc. 43 208
[6] Szlufarska I, Nakano A and Vashishta P 2005 Science 309 911
[7] Ryou H, Drazin J W, Wahl K J, Qadri S B, Gorzkowski E P, Feigelson B N and Wollmershauser J A 2018 ACS Nano 12 3083
[8] Messing G L and Stevenson A J 2008 Science 322 383
[9] Shao Y F, Yang X, Zhao X and Wang S Q 2012 Chin. Phys. B 21 083101
[10] Hansen N 2004 Scr. Mater. 51 801
[11] Li J, Luo K and An Q 2023 J. Eur. Ceram. Soc. 44 659
[12] Li W, Hahn E N, Yao X, Germann T C, Feng B and Zhang X 2020 Acta Mater. 200 632
[13] Maita J M, Rommel S, Davis J R, Ryou H, Wollmershauser J A, Gorzkowski E P, Feigelson B N, Aindow M and Lee S W 2023 Acta Mater. 251 118881
[14] Guo D, Song S, Luo R, Goddard W A, Chen M, Reddy K M and An Q 2018 Phys. Rev. Lett. 121 145504
[15] Han Q and Yi X 2022 Int. J. Plast. 153 103261
[16] Sansoz F and Ke X 2022 Acta Mater. 225 117560
[17] Han Q and Yi X 2021 J. Mech. Phys. Solids. 154 104530
[18] Duan F H, Naunheim Y, Schuh C A and Li Y 2021 Acta Mater. 213 116950
[19] Chandiran E, Ogawa Y, Ueji R and Somekawa H 2023 J. Alloys Compd. 930 167443
[20] Van Swygenhoven H 2002 Science. 296 66
[21] Hasnaoui A, Derlet P M and Van Swygenhoven H 2004 Acta Mater. 52 2251
[22] Wollmershauser J A, Feigelson B N, Gorzkowski E P, Ellis C T, Goswami R, Qadri S B, Tischler J G, Kub F J and Everett R K 2014 Acta Mater. 69 9
[23] Zhao S, Kad B, Remington B A, Lasalvia J C, Wehrenberg C E, Behler K D and Meyers M A 2016 Proc. Natl. Acad. Sci. USA 113 12088
[24] Zhao S, Li B, Remington B A, Wehrenberg C E, Park H S, Hahn E N and Meyers M A 2021 Mater. Today. 49 59
[25] Zhao S, Flanagan R, Hahn E N, Kad B, Remington B A, Wehrenberg C E, Cauble R, More K and Meyers M A 2018 Acta Mater. 158 206
[26] Reddy K M, Guo D, Song S, Cheng C, Han J, Wang X, An Q and Chen M 2021 Sci. Adv. 7 eabc6714
[27] Shen Y, Reddy K M, Li J, Chen M and An Q 2023 Acta Mater. 249 118828
[28] Jiang C, Zheng M J, Morgan D and Szlufarska I 2013 Phys. Rev. Lett. 111 155501
[29] Wu Z, Liu W, Zhang L and Lim S 2020 Acta Mater. 182 60
[30] Fanchini G, McCauley J W and Chhowalla M 2006 Phys. Rev. Lett. 97 035502
[31] An Q and Goddard W A 2015 Phys. Rev. Lett. 115 105501
[32] Luo J 2023 Interdiscip. Mater. 2 137
[33] Aryal S, Rulis P and Ching W Y 2011 Phys. Rev. B 84 184112
[34] Taylor D C E 2015 J. Am. Ceram. Soc. 98 3308
[35] Yan X Q, Tang Z, Zhang L, Guo J J, Jin C Q, Zhang Y, Goto T, McCauley J W and Chen M W 2009 Phys. Rev. Lett. 102 075505
[36] Meille S, Lombardi M, Chevalier J and Montanaro L 2016 Comput. Mater. Sci. 121 106
[37] Li J, Luo K and An Q 2023 Phys. Rev. Lett. 130 116104
[38] Hu G, Ramesh K T, Cao B and McCauley J W 2011 J. Mech. Phys. Solids. 59 1076
[39] Nemat-Nasser S and Deng H 1994 Acta Metall. Mater. 42 1013
[40] Zheng J, Ji M, Zaiemyekeh Z, Li H and Hogan J D 2022 J. Eur. Ceram. Soc. 42 7516
[41] Paliwal B and Ramesh K T 2007 Scr. Mater. 57 481
[42] Ghosh D, Subhash G, Zheng J Q and Halls V 2012 J. Appl. Phys. 111 063523
[43] Pittari J, Subhash G, Zheng J, Halls V and Jannotti P 2015 J. Eur. Ceram. Soc. 35 4411
[44] Venkatesan J, Iqbal M A and Madhu V 2020 Thin-Walled Struct. 154 106785
[45] Hogan J D, Farbaniec L, Shaeffer M and Ramesh K T 2015 J. Am. Ceram. Soc. 98 902
[46] Feng L, Li W, Hahn E N, Branicio P S, Zhang X and Yao X 2022 Mech. Mater. 164 104139
[47] Hogan J D, Farbaniec L, Sano T, Shaeffer M and Ramesh K T 2016 Acta Mater. 102 263
[48] Kimberley J, Ramesh K T and Daphalapurkar N P 2013 Acta Mater. 61 3509
[49] Domnich V, Reynaud S, Haber R A and Chhowalla M 2011 J. Am. Ceram. Soc. 94 3605
[50] Awasthi A and Subhash G 2020 Prog. Mater. Sci. 112 100664
[51] Thévenot F 1990 J. Eur. Ceram. Soc. 6 205
[52] Chen M, McCauley J W and Hemker K J 2003 Science 299 1563
[53] Reddy K M, Liu P, Hirata A, Fujita T and Chen M W 2013 Nat. Commun. 4 2483
[54] Plimpton S 1995 J. Comput. Phys. 117 1
[55] Stukowski A 2010 Model. Simul. Mater. Sci. Eng. 18 015012
[56] An Q 2021 Phys. Rev. Mater. 5 103602
[57] Frøseth A G, Van Swygenhoven H and Derlet P M 2005 Acta Mater. 53 4847
[58] Winning M and Rollett A D 2005 Acta Mater. 53 2901
[59] Li W, Hahn E N, Branicio P S, Yao X, Zhang X, Feng B and Germann T C 2021 Int. J. Plast. 138 102923
[60] Zhu Q, Shao J L and Wang P 2023 J. Nucl. Mater. 574 154200
[61] Zare Chavoshi S, Branicio P S and An Q 2021 Phys. Rev. Mater. 5 073606
[62] Figueiredo R B and Langdon T G 2021 J. Mater. Res. Technol. 14 137
[63] Meyers M A, Vöhringer O and Lubarda V A 2001 Acta Mater. 49 4025
[64] Yu H, Xin Y, Wang M and Liu Q 2018 J. Mater. Sci. Technol. 34 248
[65] Li X, Liu L, Mei H, Xu S, Li J and Zhang J 2021 Comput. Mater. Sci. 199 110708
[66] Chauhan A, Schaefer M C, Haber R A and Hemker K J 2019 Acta Mater. 181 207
[67] Li J, Xu S, Zhang J Y, Liu L S, Liu Q W, She W C and Fu Z Y 2017 Chin. Phys. B 26 047101
[68] Murnaghan F D 1944 Proc. Natl. Acad. Sci. USA 30 244
[69] Zhang Y, Mashimo T, Uemura Y, Uchino M, Kodama M, Shibata K, Fukuoka K, Kikuchi M, Kobayashi T and Sekine T 2006 J. Appl. Phys. 100 113536
[70] Mcclellan K J, Chu F, Roper J M and Shindo I 2001 J. Mater. Sci. 36 3403
[71] Molodets A M, Golyshev A A and Shakhrai D V. 2017 J. Exp. Theor. Phys. 124 469
[72] Cheenady A A, Awasthi A, Devries M, Haines C and Subhash G 2021 Phys. Rev. B 104 184110
[73] Cheng C, Reddy K M, Hirata A, Fujita T and Chen M 2017 J. Eur. Ceram. Soc. 37 4514
[74] Aselage T L, Van Deusen S B and Morosin B 1990 J. Less-Common Met. 166 29
[1] Theoretical insights into thermal transport and structural stability mechanisms of triaxial compressed methane hydrate
Dong-Sheng Chen(陈东升), Ting-Ting Miao(缪婷婷), Cheng Chang(常程), Xu-Yang Guo(郭旭洋), Meng-Yan Guan(关梦言), and Zhong-Li Ji(姬忠礼). Chin. Phys. B, 2024, 33(9): 096501.
[2] Atomistic evaluation of tension—compression asymmetry in nanoscale body-centered-cubic AlCrFeCoNi high-entropy alloy
Runlong Xing(邢润龙) and Xuepeng Liu(刘雪鹏). Chin. Phys. B, 2024, 33(1): 016202.
[3] Out-of-plane weak ferromagnetism at room temperaturein lattice-distortion non-collinear antiferromagnet of single-crystal Mn3Sn
Bo-Xi Zhang(张博熙), Ping Song(宋平), Shan-Shan Deng(邓珊珊), Li Lou(娄理), and Sen Yao(姚森). Chin. Phys. B, 2023, 32(8): 087502.
[4] A novel power-combination method using a time-reversal pulse-compression technique
Xi-Cheng Lu(陆希成), Jin Tian(田锦), Rong-Wei Zhang(张荣威), Hai-Bo Wang(汪海波), and Yang Qiu(邱扬). Chin. Phys. B, 2023, 32(8): 084101.
[5] Milli-Joule pulses post-compressed from 14 ps to 475 fs in bulk-material multi-pass cell based on cylindrical vector beam
Xu Zhang(张旭), Zhaohua Wang(王兆华), Xianzhi Wang(王羡之), Jiawen Li(李佳文), Jiajun Li(李佳俊), Guodong Zhao(赵国栋), and Zhiyi Wei(魏志义). Chin. Phys. B, 2023, 32(10): 104206.
[6] Nanobubbles produced by hydraulic air compression technique
Xiaodong Yang(杨晓东), Qingfeng Yang(杨庆峰), Limin Zhou(周利民),Lijuan Zhang(张立娟), and Jun Hu(胡钧). Chin. Phys. B, 2022, 31(5): 054702.
[7] High linearity AlGaN/GaN HEMT with double-Vth coupling for millimeter-wave applications
Pengfei Wang(王鹏飞), Minhan Mi(宓珉瀚), Meng Zhang(张濛), Jiejie Zhu(祝杰杰), Yuwei Zhou(周雨威), Jielong Liu(刘捷龙), Sijia Liu(刘思佳), Ling Yang(杨凌), Bin Hou(侯斌), Xiaohua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2022, 31(2): 027103.
[8] Mechanical and microstructural response of densified silica glass under uniaxial compression: Atomistic simulations
Yi-Fan Xie(谢轶凡), Feng Feng(冯锋), Ying-Jun Li(李英骏)†, Zhi-Qiang Hu(胡志强), Jian-Li Shao(邵建立)‡, and Yong Mei(梅勇)§. Chin. Phys. B, 2020, 29(10): 108101.
[9] Energetic few-cycle pulse compression in gas-filled hollow core fiber with concentric phase mask
Yu Zhao(赵钰), Zhi-Yuan Huang(黄志远), Rui-Rui Zhao(赵睿睿), Ding Wang(王丁), Yu-Xin Leng(冷雨欣). Chin. Phys. B, 2019, 28(6): 064207.
[10] Phase transitions in bismuth under rapid compression
Dong-Liang Yang(杨栋亮), Jing Liu(刘景), Chuan-Long Lin(林传龙), Qiu-Min Jing(敬秋民), Yi Zhang(张毅), Yu Gong(宫宇), Yan-Chun Li(李延春), Xiao-Dong Li(李晓东). Chin. Phys. B, 2019, 28(3): 036201.
[11] Performance improvement of magneto-acousto-electrical tomography for biological tissues with sinusoid-Barker coded excitation
Zheng-Feng Yu(余正风), Yan Zhou(周), Yu-Zhi Li(李禹志), Qing-Yu Ma(马青玉), Ge-Pu Guo(郭各朴), Juan Tu(屠娟), Dong Zhang(章东). Chin. Phys. B, 2018, 27(9): 094302.
[12] Generation of few-cycle radially-polarized infrared pulses in a gas-filled hollow-core fiber
Rui-Rui Zhao(赵睿睿), Zhi-Yuan Huang(黄志远), Ding Wang(王丁), Yu Zhao(赵钰), Yu-Xin Leng(冷雨欣), Ru-Xin Li(李儒新). Chin. Phys. B, 2018, 27(10): 104204.
[13] Compressing ultrafast electron pulse by radio frequency cavity
Min-Jie Pei(裴敏洁), Da-Long Qi(齐大龙), Ying-Peng Qi(齐迎朋), Tian-Qing Jia(贾天卿), Shi-An Zhang(张诗按), Zhen-Rong Sun(孙真荣). Chin. Phys. B, 2017, 26(4): 044102.
[14] Lorentz force electrical impedance tomography using pulse compression technique
Zhi-shen Sun(孙直申), Guo-qiang Liu(刘国强), Hui Xia(夏慧). Chin. Phys. B, 2017, 26(12): 124302.
[15] Measurement of iron characteristics under ramp compression
H G Wei(魏会冈), E Brambrink, N Amadou, A Benuzzi-Mounaix, A Ravasio, G Morard, F Guyot, T de Rességuier, N Ozaki, K Miyanishi, G Zhao(赵刚), M Koenig. Chin. Phys. B, 2017, 26(11): 115205.
No Suggested Reading articles found!