CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES |
Prev
Next
|
|
|
Quasi-plastic deformation mechanisms and inverse Hall-Petch relationship in nanocrystalline boron carbide under compression |
Zhen Yue(岳珍), Jun Li(李君)†, Lisheng Liu(刘立胜)‡, and Hai Mei(梅海) |
Hubei Key Laboratory of Theory and Application of Advanced Materials Mechanics, Wuhan University of Technology, Wuhan 430070, China |
|
|
Abstract Grain boundaries (GBs) play a significant role in the deformation behaviors of nanocrystalline ceramics. Here, we investigate the compression behaviors of nanocrystalline boron carbide (nB$_{4}$C) with varying grain sizes using molecular dynamics simulations with a machine-learning force field. The results reveal quasi-plastic deformation mechanisms in nB$_{4}$C: GB sliding, intergranular amorphization and intragranular amorphization. GB sliding arises from the presence of soft GBs, leading to intergranular amorphization. Intragranular amorphization arises from the interaction between grains with unfavorable orientations and the softened amorphous GBs, and finally causes structural failure. Furthermore, nB$_{4}$C models with varying grain sizes from 4.07 nm to 10.86 nm display an inverse Hall-Petch relationship due to the GB sliding mechanism. A higher strain rate in nB$_{4}$C often leads to a higher yield strength, following a $2/3$ power relationship. These deformation mechanisms are critical for the design of ceramics with superior mechanical properties.
|
Received: 21 December 2023
Revised: 10 April 2024
Accepted manuscript online:
|
PACS:
|
61.72.Mm
|
(Grain and twin boundaries)
|
|
62.20.F-
|
(Deformation and plasticity)
|
|
02.70.Ns
|
(Molecular dynamics and particle methods)
|
|
Fund: The authors acknowledge the support from the National Natural Science Foundation of China (Grant No. 11972267). |
Corresponding Authors:
Jun Li, Lisheng Liu
E-mail: jun_li@whut.edu.cn;liulish@whut.edu.cn
|
Cite this article:
Zhen Yue(岳珍), Jun Li(李君), Lisheng Liu(刘立胜), and Hai Mei(梅海) Quasi-plastic deformation mechanisms and inverse Hall-Petch relationship in nanocrystalline boron carbide under compression 2024 Chin. Phys. B 33 086105
|
[1] Xu H, Ji W, Jiang J, Liu J, Wang H, Zhang F, Yu R, Tu B, Zhang J, Zou J, Wang W, Wu J and Fu Z 2023 Nat. Commun. 14 4889 [2] Madhav Reddy K, Guo J J, Shinoda Y, Fujita T, Hirata A, Singh J P, McCauley J W and Chen M W 2012 Nat. Commun. 3 1052 [3] Zhang S, Sun D, Fu Y and Du H 2003 Surf. Coatings Technol. 167 113 [4] Guo D and An Q 2019 Int. J. Plast. 121 218 [5] Li J and An Q 2023 J. Eur. Ceram. Soc. 43 208 [6] Szlufarska I, Nakano A and Vashishta P 2005 Science 309 911 [7] Ryou H, Drazin J W, Wahl K J, Qadri S B, Gorzkowski E P, Feigelson B N and Wollmershauser J A 2018 ACS Nano 12 3083 [8] Messing G L and Stevenson A J 2008 Science 322 383 [9] Shao Y F, Yang X, Zhao X and Wang S Q 2012 Chin. Phys. B 21 083101 [10] Hansen N 2004 Scr. Mater. 51 801 [11] Li J, Luo K and An Q 2023 J. Eur. Ceram. Soc. 44 659 [12] Li W, Hahn E N, Yao X, Germann T C, Feng B and Zhang X 2020 Acta Mater. 200 632 [13] Maita J M, Rommel S, Davis J R, Ryou H, Wollmershauser J A, Gorzkowski E P, Feigelson B N, Aindow M and Lee S W 2023 Acta Mater. 251 118881 [14] Guo D, Song S, Luo R, Goddard W A, Chen M, Reddy K M and An Q 2018 Phys. Rev. Lett. 121 145504 [15] Han Q and Yi X 2022 Int. J. Plast. 153 103261 [16] Sansoz F and Ke X 2022 Acta Mater. 225 117560 [17] Han Q and Yi X 2021 J. Mech. Phys. Solids. 154 104530 [18] Duan F H, Naunheim Y, Schuh C A and Li Y 2021 Acta Mater. 213 116950 [19] Chandiran E, Ogawa Y, Ueji R and Somekawa H 2023 J. Alloys Compd. 930 167443 [20] Van Swygenhoven H 2002 Science. 296 66 [21] Hasnaoui A, Derlet P M and Van Swygenhoven H 2004 Acta Mater. 52 2251 [22] Wollmershauser J A, Feigelson B N, Gorzkowski E P, Ellis C T, Goswami R, Qadri S B, Tischler J G, Kub F J and Everett R K 2014 Acta Mater. 69 9 [23] Zhao S, Kad B, Remington B A, Lasalvia J C, Wehrenberg C E, Behler K D and Meyers M A 2016 Proc. Natl. Acad. Sci. USA 113 12088 [24] Zhao S, Li B, Remington B A, Wehrenberg C E, Park H S, Hahn E N and Meyers M A 2021 Mater. Today. 49 59 [25] Zhao S, Flanagan R, Hahn E N, Kad B, Remington B A, Wehrenberg C E, Cauble R, More K and Meyers M A 2018 Acta Mater. 158 206 [26] Reddy K M, Guo D, Song S, Cheng C, Han J, Wang X, An Q and Chen M 2021 Sci. Adv. 7 eabc6714 [27] Shen Y, Reddy K M, Li J, Chen M and An Q 2023 Acta Mater. 249 118828 [28] Jiang C, Zheng M J, Morgan D and Szlufarska I 2013 Phys. Rev. Lett. 111 155501 [29] Wu Z, Liu W, Zhang L and Lim S 2020 Acta Mater. 182 60 [30] Fanchini G, McCauley J W and Chhowalla M 2006 Phys. Rev. Lett. 97 035502 [31] An Q and Goddard W A 2015 Phys. Rev. Lett. 115 105501 [32] Luo J 2023 Interdiscip. Mater. 2 137 [33] Aryal S, Rulis P and Ching W Y 2011 Phys. Rev. B 84 184112 [34] Taylor D C E 2015 J. Am. Ceram. Soc. 98 3308 [35] Yan X Q, Tang Z, Zhang L, Guo J J, Jin C Q, Zhang Y, Goto T, McCauley J W and Chen M W 2009 Phys. Rev. Lett. 102 075505 [36] Meille S, Lombardi M, Chevalier J and Montanaro L 2016 Comput. Mater. Sci. 121 106 [37] Li J, Luo K and An Q 2023 Phys. Rev. Lett. 130 116104 [38] Hu G, Ramesh K T, Cao B and McCauley J W 2011 J. Mech. Phys. Solids. 59 1076 [39] Nemat-Nasser S and Deng H 1994 Acta Metall. Mater. 42 1013 [40] Zheng J, Ji M, Zaiemyekeh Z, Li H and Hogan J D 2022 J. Eur. Ceram. Soc. 42 7516 [41] Paliwal B and Ramesh K T 2007 Scr. Mater. 57 481 [42] Ghosh D, Subhash G, Zheng J Q and Halls V 2012 J. Appl. Phys. 111 063523 [43] Pittari J, Subhash G, Zheng J, Halls V and Jannotti P 2015 J. Eur. Ceram. Soc. 35 4411 [44] Venkatesan J, Iqbal M A and Madhu V 2020 Thin-Walled Struct. 154 106785 [45] Hogan J D, Farbaniec L, Shaeffer M and Ramesh K T 2015 J. Am. Ceram. Soc. 98 902 [46] Feng L, Li W, Hahn E N, Branicio P S, Zhang X and Yao X 2022 Mech. Mater. 164 104139 [47] Hogan J D, Farbaniec L, Sano T, Shaeffer M and Ramesh K T 2016 Acta Mater. 102 263 [48] Kimberley J, Ramesh K T and Daphalapurkar N P 2013 Acta Mater. 61 3509 [49] Domnich V, Reynaud S, Haber R A and Chhowalla M 2011 J. Am. Ceram. Soc. 94 3605 [50] Awasthi A and Subhash G 2020 Prog. Mater. Sci. 112 100664 [51] Thévenot F 1990 J. Eur. Ceram. Soc. 6 205 [52] Chen M, McCauley J W and Hemker K J 2003 Science 299 1563 [53] Reddy K M, Liu P, Hirata A, Fujita T and Chen M W 2013 Nat. Commun. 4 2483 [54] Plimpton S 1995 J. Comput. Phys. 117 1 [55] Stukowski A 2010 Model. Simul. Mater. Sci. Eng. 18 015012 [56] An Q 2021 Phys. Rev. Mater. 5 103602 [57] Frøseth A G, Van Swygenhoven H and Derlet P M 2005 Acta Mater. 53 4847 [58] Winning M and Rollett A D 2005 Acta Mater. 53 2901 [59] Li W, Hahn E N, Branicio P S, Yao X, Zhang X, Feng B and Germann T C 2021 Int. J. Plast. 138 102923 [60] Zhu Q, Shao J L and Wang P 2023 J. Nucl. Mater. 574 154200 [61] Zare Chavoshi S, Branicio P S and An Q 2021 Phys. Rev. Mater. 5 073606 [62] Figueiredo R B and Langdon T G 2021 J. Mater. Res. Technol. 14 137 [63] Meyers M A, Vöhringer O and Lubarda V A 2001 Acta Mater. 49 4025 [64] Yu H, Xin Y, Wang M and Liu Q 2018 J. Mater. Sci. Technol. 34 248 [65] Li X, Liu L, Mei H, Xu S, Li J and Zhang J 2021 Comput. Mater. Sci. 199 110708 [66] Chauhan A, Schaefer M C, Haber R A and Hemker K J 2019 Acta Mater. 181 207 [67] Li J, Xu S, Zhang J Y, Liu L S, Liu Q W, She W C and Fu Z Y 2017 Chin. Phys. B 26 047101 [68] Murnaghan F D 1944 Proc. Natl. Acad. Sci. USA 30 244 [69] Zhang Y, Mashimo T, Uemura Y, Uchino M, Kodama M, Shibata K, Fukuoka K, Kikuchi M, Kobayashi T and Sekine T 2006 J. Appl. Phys. 100 113536 [70] Mcclellan K J, Chu F, Roper J M and Shindo I 2001 J. Mater. Sci. 36 3403 [71] Molodets A M, Golyshev A A and Shakhrai D V. 2017 J. Exp. Theor. Phys. 124 469 [72] Cheenady A A, Awasthi A, Devries M, Haines C and Subhash G 2021 Phys. Rev. B 104 184110 [73] Cheng C, Reddy K M, Hirata A, Fujita T and Chen M 2017 J. Eur. Ceram. Soc. 37 4514 [74] Aselage T L, Van Deusen S B and Morosin B 1990 J. Less-Common Met. 166 29 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|