PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES |
Prev
Next
|
|
|
Measurement of iron characteristics under ramp compression |
H G Wei(魏会冈)1,2,3, E Brambrink2,3, N Amadou2,3,7, A Benuzzi-Mounaix2,3, A Ravasio2,3, G Morard4, F Guyot4, T de Rességuier5, N Ozaki6, K Miyanishi6, G Zhao(赵刚)1, M Koenig2,3 |
1. Key Laboratory of Optical Astronomy, National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012, China; 2. LULI-CNRS, Ecole Polytechnique, CEA, Université Paris-Saclay, F-91128 Palaiseau cedex, France; 3. Sorbonne Universités, UPMC Univ Paris 06, CNRS, laboratoire d'utilisation des lasers intenses(LULI), place Jussieu, 75252 Paris cedex 05, France; 4. Institut de Minéralogie, de Physique des Matériaux, et de Cosmochimie(IMPMC), Sorbonne Universités-UPMC, UMR CNRS 7590, Muséum National d'Histoire Naturelle, IRD UMR 206, F-75005 Paris, France; 5. Institut Pprime, CNRS, ENSMA, Univ. Poitiers, 1 avenue Clément Ader, Futuroscope Cedex, 86961 France; 6. Graduate School of Engineering, Osaka University, Suita, Osaka, 565-0871 Japan; 7. Département de Physique, Université Abdou Moumouni de Niamey, BP. 10662 Niamey, Niger |
|
|
Abstract Laser-driven ramp compression was used to investigate iron characteristics along the isentropic path. The iterative Lagrangian analysis method was employed to analyze the free surface velocity profiles in iron stepped target measured with two VISARs. The onset stress for the α to ε phase transformation was determined from the sudden change in the sound velocity and was found over-pressurized compared to the static and shock results. The derived stress (26 GPa) and strain rate (up to 108 s-1) are consistent with our previous experimental results. The stress-density relations were compared with those from previous ramp experiments and good agreements were found, which experimentally confirms the simulations, showing that iterative Lagrangian analysis can be applied to the ramp-compression data with weak shock.
|
Received: 20 April 2017
Revised: 02 August 2017
Accepted manuscript online:
|
PACS:
|
52.50.Jm
|
(Plasma production and heating by laser beams (laser-foil, laser-cluster, etc.))
|
|
91.35.Cb
|
(Models of interior structure)
|
|
Fund: Project supported by the National Basic Research Program of China (Grant No. 2013CBA01503) and the National Natural Science Foundation of China (Grant No. 11103040). |
Corresponding Authors:
E Brambrink, G Zhao, M Koenig
E-mail: erik.brambrink@polytechnique.edu;gzhao@bao.ac.cn;michel.koenig@polytechnique.edu
|
Cite this article:
H G Wei(魏会冈), E Brambrink, N Amadou, A Benuzzi-Mounaix, A Ravasio, G Morard, F Guyot, T de Rességuier, N Ozaki, K Miyanishi, G Zhao(赵刚), M Koenig Measurement of iron characteristics under ramp compression 2017 Chin. Phys. B 26 115205
|
[1] |
Swift D C, Eggert J H, Hicks D G, Hamel S, Caspersen K, Schwegler, E, Collins G W, Nettelmann N and Ackland G J 2012 Astrophys. J. 744 59
|
[2] |
Miguel Y, Guillot T and Fayon L 2016 Astron. Astrophys. 596 114
|
[3] |
Baraffe I, Chabrier G, Fortney J and Sotin C 2014 Protostars and Planets VI(Beuther H, Klessen R S, Dullemond C P and Henning T, Ed.)(Tucson:University of Arizona Press) p. 763
|
[4] |
Knudson M D, Hanson D L, Bailey J E, Hall C A and Asay J R 2003 Phys. Rev. Lett. 90 035505
|
[5] |
Bradley D K, Eggert J H, Smith R F, Prisbrey S T, Hicks D G, Braun D G, Biener J, Hamza A V, Rudd R E and Collins G W 2009 Phys. Rev. Lett. 102 075503
|
[6] |
Smith R F, Eggert J H, Jeanloz R, Duffy T S, Braun D G, Patterson J R, Rudd R E, Biener J, Lazicki A E, Hamza A V, Wang J, Braun T, Benedict L X, Celliers P M and Collins G W 2014 Nature 511 330
|
[7] |
Dubrovinsky L, Dubrovinskaia N, Bykova E, Bykov M, Prakapenka V, Prescher C, Glazyrin K, Liermann H P, Hanfland M, Ekholm M, Feng Q, Pourovskii L V, Katsnelson M I, Wills J M and Abrikosov I A 2015 Nature 525 226
|
[8] |
Edwards J, Lorenz K T, Remington B A, Pollaine S, Colvin J, Braun D, Lasinski B F, Reisman D, McNaney J M, Greenough J A, Wallace R, Louis H and Kalantar D 2004 Phys. Rev. Lett. 92 075002
|
[9] |
Smith R F, Minich R W, Rudd R E, Eggert J H, Bolme C A, Brygoo S L, Jones A M and Collins G W 2012 Phys. Rev. B 86 245204
|
[10] |
Bradley D K, Eggert J H, Smith R F, Prisbrey S T, Hicks D G, Braun D G, Biener J, Hamza A V, Rudd R E and Collins G W 2009 Phys. Rev. Lett. 102 075503
|
[11] |
Bastea M, Bastea S and Becker R 2009 Appl. Phys. Lett. 95 241911
|
[12] |
Smith R F, Eggert J H, Saculla M D, Jankowski A F, Bastea M, Hicks D G and Collins G W 2008 Phys. Rev. Lett. 101 065701
|
[13] |
Morard G, Bouchet J, Valencia D, Mazevet S and Guyot F 2011 High Energy Density Phys. 7 141
|
[14] |
Bancroft D, Peterson E L and Minshall S 1956 J. Appl. Phys. 27 291
|
[15] |
Barker L M and Hollenbach R E 1974 J. Appl. Phys. 45 4872
|
[16] |
Boettger J C and Wallace D C 1997 Phys. Rev. B 55 2840
|
[17] |
Wang F M and Ingalls R 1998 Phys. Rev. B 57 5647
|
[18] |
Smith R F, Eggert J H, Swift D C, Wang J, Duffy T S, Braun D G, Rudd R E, Reisman D B, Davis J P, Knudson M D and Collins G W 2013 J. Appl. Phys. 114 223507
|
[19] |
Amadou N, Brambrink E, Benuzzi-Mounaix A, Huser G, Guyot F, Mazevet S, Morard G, de Resseguier T, Vinci T, Myanishi K, Ozaki N, Kodama R, Boehly T, Henry O, Raffestin D and Koenig M 2013 High Energy Density. Phys. 9 243
|
[20] |
Amadou N, de Resseguier T, Brambrink E, Vinci T, Benuzzi-Mounaix A, Huser G, Morard G, Guyot F, Miyanishi K, Ozaki N, Kodama R and Koenig M 2016 Phys. Rev. B. 93 214108
|
[21] |
Wang J, Smith R F, Eggert J H, Braun D G, Boehly T R, Reed P J, Celliers P M, Jeanloz R, Collins G W and Duffy T S 2013 J. Appl. Phys. 114 023513
|
[22] |
Lorenz K T, Edwards M J, Jankowski A F, Pollaine S M, Smith R F and Remington B A 2006 High Energy Density. Phys. 2 113
|
[23] |
Benuzzi-Mounaix A, Koenig M, Ravasio A, Vinci T, Ozaki N, Rabec le Gloahec M, Loupias B, Huser G, Henry E, Bouquet S, Michaut C, Hicks D, MacKinnon A, Patel P, Park H S, LePape S, Boehly T, Borghesi M, Cecchetti C, Notley M, Clark R, Bandyopadhyay S, Atzeni S, Schiavi A, Aglitskiy Y, Faenov A, Pikuz T, Batani D, Dezulian R and Tanaka K 2006 Plasma Phys. Control. Fusion 48 347
|
[24] |
Swift D C and Johnson R P 2005 Phys. Rev. E 71 066401
|
[25] |
Swift D C, Kraus R G, Loomis E N, Hicks D G, McNaney J M and Johnson R P 2008 Phys. Rev. E 78 066115
|
[26] |
Brambrink E, Amadou N, Benuzzi-Mounaix A, Geissel M, Harmand M, Pelka A, Vinci T and Koenig M 2015 Contrib. Plasma Phys. 55 67
|
[27] |
Amadou N, Brambrink E, de Resseguier T, Manga A O, Aboubacar A, Borm B and Molineri A 2016 Metals 6 320
|
[28] |
Taylor J W 1965 J. Appl. Phys. 36 3146
|
[29] |
Rothman S D and Maw J 2006 J. Phys. IV 134 745
|
[30] |
Fratanduono D E, Smith R F, Braun D G, Patterson J R, Kraus R G, Perry T S, Arsenlis A, Collins G W and Eggert J H 2015 J. Appl. Phys. 117 245903
|
[31] |
SESAME, The LANL Equation of State Database, Tech. Rep. LA-UR-92-3407, LANL, 1992
|
[32] |
Smith R F, Minich R W, Rudd R E, Eggert J H, Bolme C A, Brygoo S L, Jones A M and Collins G W 2012 Phys. Rev. B 86 245204
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|