CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES |
Prev
Next
|
|
|
Step-edge-guided nucleation and growth mode transition of α-Ga2O3 heteroepitaxy on vicinal sapphire |
Jinggang Hao(郝景刚)1,2, Yanfang Zhang(张彦芳)2,3, Yijun Zhang(张贻俊)2, Ke Xu(徐科)1,5,†, Genquan Han(韩根全)4,5,‡, and Jiandong Ye(叶建东)2,§ |
1 Test & Analysis Platform, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China; 2 School of Electronic Science and Engineering, Nanjing University, Nanjing 210023, China; 3 Wuxi Institute of Technology, Wuxi 214121, China; 4 School of Microelectronics, Xidian University, Xi'an 710071, China; 5 Suzhou National Laboratory for Materials Science, Jiangsu Institute of Advanced Semiconductors, Suzhou 215123, China |
|
|
Abstract Controlling the epitaxial growth mode of semiconductor layers is crucial for optimizing material properties and device performance. In this work, the growth mode of $\alpha $-Ga$_{2}$O$_{3}$ heteroepitaxial layers was modulated by tuning miscut angles ($\mathrm{\theta })$ from 0$^\circ$ to 7$^\circ$ off the (10$\bar 1$0) direction of sapphire (0002) substrate. On flat sapphire surfaces, the growth undergoes a typical three-dimensional (3D) growth mode due to the random nucleation on wide substrate terraces, as evidenced by the hillock morphology and high dislocation densities. As the miscut angle increases to $\theta =5^\circ$, the terrace width of sapphire substrate is comparable to the distance between neighboring nuclei, and consequently, the nucleation is guided by terrace edges, which energetically facilitates the growth mode transition into the desirable two-dimensional (2D) coherent growth. Consequently, the mean surface roughness decreases to only 0.62 nm, accompanied by a significant reduction in screw and edge dislocations to 0.16$\times 10^{7}$ cm$^{-2}$ and 3.58$\times10^{9}$ cm$^{-2}$, respectively. However, the further increment of miscut angles to $\theta =7^\circ$ shrink the terrace width less than nucleation distance, and the step-bunching growth mode is dominant. In this circumstance, the misfit strain is released in the initial growth stage, resulting in surface morphology degradation and increased dislocation densities.
|
Received: 08 April 2024
Revised: 21 May 2024
Accepted manuscript online:
|
PACS:
|
61.72.uj
|
(III-V and II-VI semiconductors)
|
|
61.72.Bb
|
(Theories and models of crystal defects)
|
|
68.35.Ct
|
(Interface structure and roughness)
|
|
61.72.Ff
|
(Direct observation of dislocations and other defects (etch pits, decoration, electron microscopy, x-ray topography, etc.))
|
|
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2022YFB3605403), the National Natural Science Foundation of China (Grant Nos. 62234007, 62241407, 62293521, 62304238, 62241407, U21A20503, and U21A2071), the Key-Area Research and Development Program of Guangdong Province, China (Grant No. 2020B010174002), and the Cultivation Project for Youth Teachers in Jiangsu Province, and Jiangsu Funding Program for Excellent Postdoctoral Talent. |
Corresponding Authors:
Ke Xu, Genquan Han, Jiandong Ye
E-mail: kxu2006@sinano.ac.cn;gqhan@xidian.edu.cn;yejd@nju.edu.cn
|
Cite this article:
Jinggang Hao(郝景刚), Yanfang Zhang(张彦芳), Yijun Zhang(张贻俊), Ke Xu(徐科), Genquan Han(韩根全), and Jiandong Ye(叶建东) Step-edge-guided nucleation and growth mode transition of α-Ga2O3 heteroepitaxy on vicinal sapphire 2024 Chin. Phys. B 33 086104
|
[1] Waseem A, Ren Z J, Huang H C, Nguyen K, Wu X H and Li X L 2023 Phys. Status Solidi A 220 2200616 [2] Biswas M and Nishinaka H 2022 APL Mater. 10 060701 [3] Galazka Z 2022 J. Appl. Phys. 131 031103 [4] Singh R, Lenka T R, Panda D K, Velpula R T, Jain B, Bui H Q T and Nguyen H P T 2020 Mat. Sci. Semicon. Proc. 119 105216 [5] Sun X Y, Wang Z P, Gong H H, Chen X H, Zhang Y J, Wang Z Y, Yu X X, Ren F F, Lu H, Gu S L, Zheng Y D, Zhang R and Ye J D 2022 IEEE Electron. Dev. Lett. 43 3156177 [6] Sun X Y, Chen X H, Hao J G, Wang Z P, Xu Y, Gong H H, Zhang Y J, Zhang R and Ye J D 2021 Appl. Phys. Lett. 119 141601 [7] Xie C, Lu X T, Tong X W, Zhang Z X, Liang F X, Liang L and Wu Y C 2019 Adv. Func. Mater. 29 1806006 [8] Xi Z Y, Yang L L, Shu L C, Zhang M L, Li S, Shi L, Liu Z, Guo Y F and Tang W H 2023 Chin. Phys. B 32 088502 [9] Kaneko K, Fujita S and Hitora T 2018 Jpn. J. Appl. Phys. 57 02CB18 [10] Kaneko K, Fujita S and Hitora T 2023 Jpn. J. Appl. Phys. 62 SF0803 [11] Vogt S, Petersen C, Knei M, Splith D, Schultz T, Wenckstern H, Koch N and Grundmann M 2023 Phys. Status Solidi A 220 2200721 [12] Williams M S, Orts M A, Schowalter M, Karg A, Raghuvansy S, McCandless J P, Jena D, Rosenauer A, Eickhoff M and Vogt P 2024 APL Mater. 12 011120 [13] Ahmadi E and Oshima Y 2019 J. Appl. Phys. 126 160901 [14] Oshima Y and Ahmadi E 2022 Appl. Phys. Lett. 121 260501 [15] Xie W L, Lv X Y, Wang Q L, Li L A and Zou G T 2022 Chin. Phys. B 31 108106 [16] Köpp S, Petersen C, Splith D, Grundmann M and von Wencksterna H 2023 J. Vac. Sci. Technol. A 41 043411 [17] Narin P, Kutlu-Narin E, Kayral S, Tulek R, Gokden S, Teke A and Lisesivdin S B 2022 J. Lumin. 251 119158 [18] Dang G T, Suwa Y, Sakamoto M, Liu L, Rutthongjan P, Sato S, Yasuoka T, Hasegawa R and Kawaharamura T 2018 Appl. Phys. Express 11 111101 [19] Watahiki T, Yuda Y, Furukawa A, Yamamuka M, Takiguchi Y and Miyajima S 2017 Appl. Phys. Lett. 111 222104 [20] Kuang Y, Chen X H, Ma T C, Du Q Q, Zhang Y F, Hao J G, Ren F F, Liu B, Zhu S M, Gu S L, Zhang R, Zheng Y D and Ye J D 2021 ACS Appl. Electron. Mater. 3 795 [21] Liu L, Uedab M and Kawaharamura T 2023 RSC Adv. 13 13456 [22] Wang X J, Mu W X, Xie J H, Zhang J T, Li Y, Jia Z T and Tao X T 2023 J. Semicond. 44 062803 [23] Uno K and Ohta M 2023 Jpn. J. Appl. Phys. 62 SF1026 [24] Wakamatsu T, Isobe Y, Takane H, Kaneko K and Tanaka K 2024 J. Appl. Phys. 135 155705 [25] Liu Z, Li P G, Zhi Y S, Wang X L, Chu X L and Tang W H 2019 Chin. Phys. B 28 017105 [26] Ikenoue T, Inoue J, Miyake M and Hirato T 2019 J. Crystal Growth 507 379 [27] Zhang K T, Thirupakuzi Vangipuram V G, Huang H L, Hwang J and Zhao H P 2023 Adv. Electron. Mater. 2300550 [28] Jinno R, Uchida T, Kaneko K and Fujita S 2016 Appl. Phys. Express 9 071101 [29] Zhang Y J, Wang Z P, Kuang Y, Gong H H, Hao J G, Sun X Y, Ren F F, Yang Y, Gu S L, Zheng Y D, Zhang R and Ye J D 2022 Appl. Phys. Lett. 120 121601 [30] Fan Z Y and Men H 2022 Metals 12 1547 [31] Jun Y S, Kim D and Neil C W 2016 Acc. Chem. Res. 49 1681 [32] Hooks D E, Fritz T and Ward M D 2001 Adv. Mater. 13 227 [33] Shinohara D and Fujita S 2008 Jpn. J. Appl. Phys. 47 7311 [34] Huang X, Bai J, Dudley M, Dupuis R D and Chowdhury U 2005 Appl. Phys. Lett. 86 211916 [35] Mukhopadhyay S, Sanyal S, Wang G, Gupta C and Pasayat S S 2023 Crystals 13 1457 [36] Fu J H, Min J C, Chang C K, Tseng C C, Wang Q, Sugisaki H, Li C Y, Chang Y M, Alnami I, Syong W R, Lin C, Fang F, Zhao L, Lo T H, Lai C S, Chiu W S, Jian Z S, Chang W H, Lu Y J, Shih K M, Li L J, Wan Y, Shi Y M and Tung V 2023 Nat. Nanotechnol. 18 1289 [37] Aruta C, Ricci F, Balestrino G, Lavanga S, Medaglia P G, Orgiani P, Tebano A and Zegenhagen J 2002 Phys. Rev. B 65 195408 [38] Brinks P, Siemons W, Kleibeuker J E, Koster G, Rijnders G and Huijben M 2011 Appl. Phys. Lett. 98 242904 [39] Bhuiyan A F M A U, Feng Z, Johnson J M, Huang H L, Hwang J and Zhao H P 2020 Cryst. Growth Des. 20 6722 [40] Banal R G, Funato M and Kawakami Y 2009 Phys. Status Solidi C 6 599 [41] Schewski R, Baldini M, Irmscher K, Fiedler A, Markurt T, Neuschulz B, Remmele T, Schulz T, Wagner G, Galazka Z and Albrecht M 2016 J. Appl. Phys. 120 225308 [42] Smirnov A M, Kremleva A V, Sharofidinov S S, Bougrov V E and Romanov A E 2020 Appl. Phys. Express 13 075502 [43] Son H and Jeon D W 2019 J. Alloys Compd. 773 631 [44] Gay P, Hirsch P B and Kelly A 1953 Acta Metall. 1 315 [45] Dunn C G and Kogh E F 1957 Acta Metall. 5 548 [46] Heinke H, Kirchner V, Einfeldt S and Hommel D 1999 Phys. Stat. Sol. (a) 176 391 [47] Kaganer V M, Brandt O, Trampert A and Ploog K H 2005 Phys. Rev. B 72 045423 [48] Moram M A and Vickers M E 2009 Rep. Prog. Phys. 72 036502 [49] Ma T C, Chen X H, Ren FF, Zhu S M, Gu S L, Zhang R, Zheng Y D and Ye J D 2019 J. Semicond. 40 012804 [50] Hata M, Isu T, Watanabe A, Kajikawa Y and Katayama Y 1991 J. Cryst. Growth 114 203 [51] Tokura Y, Saitos H and Fukui T 1989 J. Cryst. Growth 94 46 [52] Kaneko K, Kawanowa H, Ito H and Fujita S 2012 Jpn. J. Appl. Phys. 51 020201 [53] Kuang Y, Ma T C, Chen X H, Hao J G, Ren F F, Gu S L, Zhang R, Zheng Y D and Ye J D 2021 Appl. Phys. Lett. 119 182102 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|