Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(8): 086104    DOI: 10.1088/1674-1056/ad4ff6
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Step-edge-guided nucleation and growth mode transition of α-Ga2O3 heteroepitaxy on vicinal sapphire

Jinggang Hao(郝景刚)1,2, Yanfang Zhang(张彦芳)2,3, Yijun Zhang(张贻俊)2, Ke Xu(徐科)1,5,†, Genquan Han(韩根全)4,5,‡, and Jiandong Ye(叶建东)2,§
1 Test & Analysis Platform, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China;
2 School of Electronic Science and Engineering, Nanjing University, Nanjing 210023, China;
3 Wuxi Institute of Technology, Wuxi 214121, China;
4 School of Microelectronics, Xidian University, Xi'an 710071, China;
5 Suzhou National Laboratory for Materials Science, Jiangsu Institute of Advanced Semiconductors, Suzhou 215123, China
Abstract  Controlling the epitaxial growth mode of semiconductor layers is crucial for optimizing material properties and device performance. In this work, the growth mode of $\alpha $-Ga$_{2}$O$_{3}$ heteroepitaxial layers was modulated by tuning miscut angles ($\mathrm{\theta })$ from 0$^\circ$ to 7$^\circ$ off the (10$\bar 1$0) direction of sapphire (0002) substrate. On flat sapphire surfaces, the growth undergoes a typical three-dimensional (3D) growth mode due to the random nucleation on wide substrate terraces, as evidenced by the hillock morphology and high dislocation densities. As the miscut angle increases to $\theta =5^\circ$, the terrace width of sapphire substrate is comparable to the distance between neighboring nuclei, and consequently, the nucleation is guided by terrace edges, which energetically facilitates the growth mode transition into the desirable two-dimensional (2D) coherent growth. Consequently, the mean surface roughness decreases to only 0.62 nm, accompanied by a significant reduction in screw and edge dislocations to 0.16$\times 10^{7}$ cm$^{-2}$ and 3.58$\times10^{9}$ cm$^{-2}$, respectively. However, the further increment of miscut angles to $\theta =7^\circ$ shrink the terrace width less than nucleation distance, and the step-bunching growth mode is dominant. In this circumstance, the misfit strain is released in the initial growth stage, resulting in surface morphology degradation and increased dislocation densities.
Keywords:  growth mode      miscut angle      crystalline quality      surface morphology  
Received:  08 April 2024      Revised:  21 May 2024      Accepted manuscript online:  24 May 2024
PACS:  61.72.uj (III-V and II-VI semiconductors)  
  61.72.Bb (Theories and models of crystal defects)  
  68.35.Ct (Interface structure and roughness)  
  61.72.Ff (Direct observation of dislocations and other defects (etch pits, decoration, electron microscopy, x-ray topography, etc.))  
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2022YFB3605403), the National Natural Science Foundation of China (Grant Nos. 62234007, 62241407, 62293521, 62304238, 62241407, U21A20503, and U21A2071), the Key-Area Research and Development Program of Guangdong Province, China (Grant No. 2020B010174002), and the Cultivation Project for Youth Teachers in Jiangsu Province, and Jiangsu Funding Program for Excellent Postdoctoral Talent.
Corresponding Authors:  Ke Xu, Genquan Han, Jiandong Ye     E-mail:  kxu2006@sinano.ac.cn;gqhan@xidian.edu.cn;yejd@nju.edu.cn

Cite this article: 

Jinggang Hao(郝景刚), Yanfang Zhang(张彦芳), Yijun Zhang(张贻俊), Ke Xu(徐科), Genquan Han(韩根全), and Jiandong Ye(叶建东) Step-edge-guided nucleation and growth mode transition of α-Ga2O3 heteroepitaxy on vicinal sapphire 2024 Chin. Phys. B 33 086104

[1] Waseem A, Ren Z J, Huang H C, Nguyen K, Wu X H and Li X L 2023 Phys. Status Solidi A 220 2200616
[2] Biswas M and Nishinaka H 2022 APL Mater. 10 060701
[3] Galazka Z 2022 J. Appl. Phys. 131 031103
[4] Singh R, Lenka T R, Panda D K, Velpula R T, Jain B, Bui H Q T and Nguyen H P T 2020 Mat. Sci. Semicon. Proc. 119 105216
[5] Sun X Y, Wang Z P, Gong H H, Chen X H, Zhang Y J, Wang Z Y, Yu X X, Ren F F, Lu H, Gu S L, Zheng Y D, Zhang R and Ye J D 2022 IEEE Electron. Dev. Lett. 43 3156177
[6] Sun X Y, Chen X H, Hao J G, Wang Z P, Xu Y, Gong H H, Zhang Y J, Zhang R and Ye J D 2021 Appl. Phys. Lett. 119 141601
[7] Xie C, Lu X T, Tong X W, Zhang Z X, Liang F X, Liang L and Wu Y C 2019 Adv. Func. Mater. 29 1806006
[8] Xi Z Y, Yang L L, Shu L C, Zhang M L, Li S, Shi L, Liu Z, Guo Y F and Tang W H 2023 Chin. Phys. B 32 088502
[9] Kaneko K, Fujita S and Hitora T 2018 Jpn. J. Appl. Phys. 57 02CB18
[10] Kaneko K, Fujita S and Hitora T 2023 Jpn. J. Appl. Phys. 62 SF0803
[11] Vogt S, Petersen C, Knei M, Splith D, Schultz T, Wenckstern H, Koch N and Grundmann M 2023 Phys. Status Solidi A 220 2200721
[12] Williams M S, Orts M A, Schowalter M, Karg A, Raghuvansy S, McCandless J P, Jena D, Rosenauer A, Eickhoff M and Vogt P 2024 APL Mater. 12 011120
[13] Ahmadi E and Oshima Y 2019 J. Appl. Phys. 126 160901
[14] Oshima Y and Ahmadi E 2022 Appl. Phys. Lett. 121 260501
[15] Xie W L, Lv X Y, Wang Q L, Li L A and Zou G T 2022 Chin. Phys. B 31 108106
[16] Köpp S, Petersen C, Splith D, Grundmann M and von Wencksterna H 2023 J. Vac. Sci. Technol. A 41 043411
[17] Narin P, Kutlu-Narin E, Kayral S, Tulek R, Gokden S, Teke A and Lisesivdin S B 2022 J. Lumin. 251 119158
[18] Dang G T, Suwa Y, Sakamoto M, Liu L, Rutthongjan P, Sato S, Yasuoka T, Hasegawa R and Kawaharamura T 2018 Appl. Phys. Express 11 111101
[19] Watahiki T, Yuda Y, Furukawa A, Yamamuka M, Takiguchi Y and Miyajima S 2017 Appl. Phys. Lett. 111 222104
[20] Kuang Y, Chen X H, Ma T C, Du Q Q, Zhang Y F, Hao J G, Ren F F, Liu B, Zhu S M, Gu S L, Zhang R, Zheng Y D and Ye J D 2021 ACS Appl. Electron. Mater. 3 795
[21] Liu L, Uedab M and Kawaharamura T 2023 RSC Adv. 13 13456
[22] Wang X J, Mu W X, Xie J H, Zhang J T, Li Y, Jia Z T and Tao X T 2023 J. Semicond. 44 062803
[23] Uno K and Ohta M 2023 Jpn. J. Appl. Phys. 62 SF1026
[24] Wakamatsu T, Isobe Y, Takane H, Kaneko K and Tanaka K 2024 J. Appl. Phys. 135 155705
[25] Liu Z, Li P G, Zhi Y S, Wang X L, Chu X L and Tang W H 2019 Chin. Phys. B 28 017105
[26] Ikenoue T, Inoue J, Miyake M and Hirato T 2019 J. Crystal Growth 507 379
[27] Zhang K T, Thirupakuzi Vangipuram V G, Huang H L, Hwang J and Zhao H P 2023 Adv. Electron. Mater. 2300550
[28] Jinno R, Uchida T, Kaneko K and Fujita S 2016 Appl. Phys. Express 9 071101
[29] Zhang Y J, Wang Z P, Kuang Y, Gong H H, Hao J G, Sun X Y, Ren F F, Yang Y, Gu S L, Zheng Y D, Zhang R and Ye J D 2022 Appl. Phys. Lett. 120 121601
[30] Fan Z Y and Men H 2022 Metals 12 1547
[31] Jun Y S, Kim D and Neil C W 2016 Acc. Chem. Res. 49 1681
[32] Hooks D E, Fritz T and Ward M D 2001 Adv. Mater. 13 227
[33] Shinohara D and Fujita S 2008 Jpn. J. Appl. Phys. 47 7311
[34] Huang X, Bai J, Dudley M, Dupuis R D and Chowdhury U 2005 Appl. Phys. Lett. 86 211916
[35] Mukhopadhyay S, Sanyal S, Wang G, Gupta C and Pasayat S S 2023 Crystals 13 1457
[36] Fu J H, Min J C, Chang C K, Tseng C C, Wang Q, Sugisaki H, Li C Y, Chang Y M, Alnami I, Syong W R, Lin C, Fang F, Zhao L, Lo T H, Lai C S, Chiu W S, Jian Z S, Chang W H, Lu Y J, Shih K M, Li L J, Wan Y, Shi Y M and Tung V 2023 Nat. Nanotechnol. 18 1289
[37] Aruta C, Ricci F, Balestrino G, Lavanga S, Medaglia P G, Orgiani P, Tebano A and Zegenhagen J 2002 Phys. Rev. B 65 195408
[38] Brinks P, Siemons W, Kleibeuker J E, Koster G, Rijnders G and Huijben M 2011 Appl. Phys. Lett. 98 242904
[39] Bhuiyan A F M A U, Feng Z, Johnson J M, Huang H L, Hwang J and Zhao H P 2020 Cryst. Growth Des. 20 6722
[40] Banal R G, Funato M and Kawakami Y 2009 Phys. Status Solidi C 6 599
[41] Schewski R, Baldini M, Irmscher K, Fiedler A, Markurt T, Neuschulz B, Remmele T, Schulz T, Wagner G, Galazka Z and Albrecht M 2016 J. Appl. Phys. 120 225308
[42] Smirnov A M, Kremleva A V, Sharofidinov S S, Bougrov V E and Romanov A E 2020 Appl. Phys. Express 13 075502
[43] Son H and Jeon D W 2019 J. Alloys Compd. 773 631
[44] Gay P, Hirsch P B and Kelly A 1953 Acta Metall. 1 315
[45] Dunn C G and Kogh E F 1957 Acta Metall. 5 548
[46] Heinke H, Kirchner V, Einfeldt S and Hommel D 1999 Phys. Stat. Sol. (a) 176 391
[47] Kaganer V M, Brandt O, Trampert A and Ploog K H 2005 Phys. Rev. B 72 045423
[48] Moram M A and Vickers M E 2009 Rep. Prog. Phys. 72 036502
[49] Ma T C, Chen X H, Ren FF, Zhu S M, Gu S L, Zhang R, Zheng Y D and Ye J D 2019 J. Semicond. 40 012804
[50] Hata M, Isu T, Watanabe A, Kajikawa Y and Katayama Y 1991 J. Cryst. Growth 114 203
[51] Tokura Y, Saitos H and Fukui T 1989 J. Cryst. Growth 94 46
[52] Kaneko K, Kawanowa H, Ito H and Fujita S 2012 Jpn. J. Appl. Phys. 51 020201
[53] Kuang Y, Ma T C, Chen X H, Hao J G, Ren F F, Gu S L, Zhang R, Zheng Y D and Ye J D 2021 Appl. Phys. Lett. 119 18210
[1] Extensive numerical simulations on competitive growth between the Edwards-Wilkinson and Kardar-Parisi-Zhang universality classes
Chengzhi Yu(余成志), Xiao Liu(刘潇), Jun Tang(唐军), and Hui Xia(夏辉). Chin. Phys. B, 2024, 33(6): 060502.
[2] Surface structure modification of ReSe2 nanosheets via carbon ion irradiation
Mei Qiao(乔梅), Tie-Jun Wang(王铁军), Yong Liu(刘泳), Tao Liu(刘涛), Shan Liu(刘珊), and Shi-Cai Xu(许士才). Chin. Phys. B, 2023, 32(2): 026101.
[3] Effect of different catalysts and growth temperature on the photoluminescence properties of zinc silicate nanostructures grown via vapor-liquid-solid method
Ghfoor Muhammad, Imran Murtaza, Rehan Abid, and Naeem Ahmad. Chin. Phys. B, 2022, 31(5): 057801.
[4] Relationship between the spatial position of the seed and growth mode for single-crystal diamond grown with an enclosed-type holder
Wen-Liang Xie(谢文良), Xian-Yi Lv(吕宪义), Qi-Liang Wang(王启亮), Liu-An Li(李柳暗), and Guang-Tian Zou(邹广田). Chin. Phys. B, 2022, 31(10): 108106.
[5] Influence of N+ implantation on structure, morphology, and corrosion behavior of Al in NaCl solution
Hadi Savaloni, Rezvan Karami, Helma Sadat Bahari, Fateme Abdi. Chin. Phys. B, 2020, 29(5): 058102.
[6] Low-temperature plasma enhanced atomic layer deposition of large area HfS2 nanocrystal thin films
Ailing Chang(常爱玲), Yichen Mao(毛亦琛), Zhiwei Huang(黄志伟), Haiyang Hong(洪海洋), Jianfang Xu(徐剑芳), Wei Huang(黄巍), Songyan Chen(陈松岩), Cheng Li(李成). Chin. Phys. B, 2020, 29(3): 038102.
[7] Growth and characterization of AlN epilayers using pulsed metal organic chemical vapor deposition
Zesheng Ji(吉泽生), Lianshan Wang(汪连山), Guijuan Zhao(赵桂娟), Yulin Meng(孟钰淋), Fangzheng Li(李方政), Huijie Li(李辉杰), Shaoyan Yang(杨少延), Zhanguo Wang(王占国). Chin. Phys. B, 2017, 26(7): 078102.
[8] Analysis of the induction of the myelin basic protein binding to the plasma membrane phospholipid monolayer
Lei Zhang(张蕾), Changchun Hao(郝长春), Ying Feng(冯盈), Feng Gao(高峰), Xiaolong Lu(逯晓龙), Junhua Li(李俊花), Runguang Sun(孙润广). Chin. Phys. B, 2016, 25(9): 090507.
[9] Effects of annealing temperature on shape transformation and optical properties of germanium quantum dots
Alireza Samavati, Z. Othaman, S. K. Ghoshal, M. K. Mustafa. Chin. Phys. B, 2015, 24(2): 028103.
[10] Effects of Lévy noise and immune delay on the extinction behavior in a tumor growth model
Hao Meng-Li (郝孟丽), Xu Wei (徐伟), Gu Xu-Dong (谷旭东), Qi Lu-Yuan (戚鲁媛). Chin. Phys. B, 2014, 23(9): 090501.
[11] Effect of additional silicon on titanium/4H-SiC contacts properties
Zhang Yong-Ping (张永平), Chen Zhi-Zhan (陈之战), Lu Wu-Yue (卢吴越), Tan Jia-Hui (谈嘉慧), Cheng Yue (程越), Shi Wang-Zhou (石旺舟). Chin. Phys. B, 2014, 23(5): 057303.
[12] Improvement in a-plane GaN crystalline quality using wet etching method
Cao Rong-Tao (曹荣涛), Xu Sheng-Rui (许晟瑞), Zhang Jin-Cheng (张进成), Zhao Yi (赵一), Xue Jun-Shuai (薛军帅), Ha Wei (哈微), Zhang Shuai (张帅), Cui Pei-Shui (崔培水), Wen Hui-Juan (温慧娟), Chen Xing (陈兴). Chin. Phys. B, 2014, 23(4): 047804.
[13] Microstructure and its influence on CH4 adsorption behavior of deep coal
Feng Yan-Yan (冯艳艳), Jiang Cheng-Fa (江成发), Liu Dai-Jun (刘代俊), Chu Wei (储伟). Chin. Phys. B, 2014, 23(2): 028201.
[14] Germanium nanoislands grown by radio frequency magnetron sputtering:Annealing time dependent surface morphology and photoluminescence
Alireza Samavati, Z. Othaman, S. K. Ghoshal, R. J. Amjad. Chin. Phys. B, 2013, 22(9): 098102.
[15] Interface evolution of a particle in a supersaturated solution affected by a far-field uniform flow
Chen Ming-Wen (陈明文), Wang Zi-Dong (王自东). Chin. Phys. B, 2013, 22(9): 098104.
[1] Tuo Li(李拓), Ke Cheng(程可), Zheng Peng(彭政), Hui Yang(杨晖), and Meiying Hou(厚美瑛). Intruder trajectory tracking in a three-dimensional vibration-driven granular system: Unveiling the mechanism of the Brazil nut effect[J]. Chin. Phys. B, 2023, 32(10): 104501 .
[2] Zhengwen Wang(王政文), Yingzhuo Han(韩英卓), Kenji Watanabe, Takashi Taniguchi, Yuhang Jiang(姜宇航), and Jinhai Mao(毛金海). Field induced Chern insulating states in twisted monolayer-bilayer graphene[J]. Chin. Phys. B, 2024, 33(6): 67301 -067301 .
[3] Fuyu Tian(田伏钰), Muhammad Faizan, Xin He(贺欣), Yuanhui Sun(孙远慧), and Lijun Zhang(张立军). Moiré superlattices arising from growth induced by screw dislocations in layered materials[J]. Chin. Phys. B, 2024, 33(7): 77403 -077403 .
[4] Wen-Chuang Shang(商文创), Yi-Ning Han(韩熠宁), Shimpei Endo, and Chao Gao(高超). Topological phases and edge modes of an uneven ladder[J]. Chin. Phys. B, 2024, 33(8): 80202 -080202 .
[5] Ao Wang(汪澳), Yu-Zhen Wei(魏玉震), Min Jiang(姜敏), Yong-Cheng Li(李泳成), Hong Chen(陈虹), and Xu Huang(黄旭). Effects of quantum noise on teleportation of arbitrary two-qubit state via five-particle Brown state[J]. Chin. Phys. B, 2024, 33(8): 80307 -080307 .
[6] Pu Wang(王璞), Zhong-Yan Li(李忠艳), and Hui-Xian Meng(孟会贤). Quantum block coherence with respect to projective measurements[J]. Chin. Phys. B, 2024, 33(8): 80308 -080308 .
[7] Yikang Chen(陈奕康) and Zong-Hong Zhu(朱宗宏). Detecting short-term gravitational waves from post-merger hyper-massive neutron stars with a kilohertz detector[J]. Chin. Phys. B, 2024, 33(8): 80401 -080401 .
[8] Jia-Yi Zhu(朱佳仪), Zhi-Min He(何志民), Cheng Huang(黄成), Jun Zeng(曾峻), Hui-Chuan Lin(林惠川), Fu-Chang Chen(陈福昌), Chao-Qun Yu(余超群), Yan Li(李燕), Yong-Tao Zhang(张永涛), Huan-Ting Chen(陈焕庭), and Ji-Xiong Pu(蒲继雄). Deep learning-assisted common temperature measurement based on visible light imaging[J]. Chin. Phys. B, 2024, 33(8): 80701 -080701 .
[9] C. S. Gomes, F. E. Jorge, and A. Canal Neto. All-electron basis sets for H to Xe specific for ZORA calculations: Applications in atoms and molecules[J]. Chin. Phys. B, 2024, 33(8): 83101 -083101 .
[10] Jialing Yang(杨嘉玲), Aoqian Shi(史奥芊), Yuchen Peng(彭宇宸), Peng Peng(彭鹏), and Jianjun Liu(刘建军). Interface state-based bound states in continuum and below-continuum-resonance modes with high-Q factors in the rotational periodic system[J]. Chin. Phys. B, 2024, 33(8): 84206 -084206 .