ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS |
Prev
Next
|
|
|
Energetic few-cycle pulse compression in gas-filled hollow core fiber with concentric phase mask |
Yu Zhao(赵钰)1,2, Zhi-Yuan Huang(黄志远)1,2, Rui-Rui Zhao(赵睿睿)1,2, Ding Wang(王丁)1, Yu-Xin Leng(冷雨欣)1 |
1 State Key Laboratory of High Field Laser Physics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China;
2 Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China |
|
|
Abstract The compression of high-energy, linearly polarized pulses in a gas-filled hollow core fiber (HCF) by using a concentric phase mask is studied theoretically. Simulation results indicate that using a properly designed concentric phase mask, a 40-fs input pulse centered at 800 nm with energy up to 10.0 mJ can be compressed to a full width at half maximum (FWHM) of less than 5 fs after propagating through a neon-filled HCF with a length of 1 m and diameter of 500 μ with a transmission efficiency of 67%, which is significantly higher than that without a concentric phase mask. Pulses with energy up to 20.0 mJ can also be efficiently compressed to less than 10 fs with the concentric phase mask. The higher efficiency due to the concentric phase mask can be attributed to the redistribution of the transverse intensity profile, which reduces the effect of ionization. The proposed method exhibits great potential for generating few-cycle laser pulse sources with high energy by the HCF compressor.
|
Received: 21 February 2019
Revised: 28 March 2019
Accepted manuscript online:
|
PACS:
|
42.65.-k
|
(Nonlinear optics)
|
|
42.81.Qb
|
(Fiber waveguides, couplers, and arrays)
|
|
42.79.Ci
|
(Filters, zone plates, and polarizers)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 61521093), the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDB1603), the International Science and Technology Cooperation Program of China (Grant No. 2016YFE0119300), and the Program of Shanghai Academic/Technology Research Leader, China (Grant No. 18XD1404200). |
Corresponding Authors:
Ding Wang, Yu-Xin Leng
E-mail: wangding@siom.ac.cn;lengyuxin@mail.siom.ac.cn
|
Cite this article:
Yu Zhao(赵钰), Zhi-Yuan Huang(黄志远), Rui-Rui Zhao(赵睿睿), Ding Wang(王丁), Yu-Xin Leng(冷雨欣) Energetic few-cycle pulse compression in gas-filled hollow core fiber with concentric phase mask 2019 Chin. Phys. B 28 064207
|
[1] |
Zhou J, Peatross J, Murnane M M, Kapteyn H C and Christov I P 1996 Phys. Rev. Lett. 76 752
|
[2] |
Krausz F and Ivanov M 2009 Rev. Mod. Phys. 81 163
|
[3] |
Zhang W H and Chen L X 2018 Chin. Opt. Lett. 16 030501
|
[4] |
Scrinzi A, Ivanov M Y, Kienberger R and Villeneuve D M 2006 J. Phys. B: At. Mol. Opt. Phys. 39 R1
|
[5] |
Feng X, Gilbertson S, Mashiko H, Wang H, Khan S D, Chini M, Wu Y, Zhao K and Chang Z 2009 Phys. Rev. Lett. 103 183901
|
[6] |
Li M, Zhang G Z, Zhao T Q, Ding X and Yao J Q 2017 Chin. Opt. Lett. 15 120202
|
[7] |
Li M, Zhang G Z, Zhao T Q, Ding X and Yao J Q 2017 Chin. Opt. Lett. 15 110201
|
[8] |
Gopal A, Herzer S, Schmidt A, Singh P, Reinhard A, Ziegler W, Brömmel D, Karmakar A, Gibbon P, Dillner U, May T, Meyer H G and Paulus G G 2013 Phys. Rev. Lett. 111 074802
|
[9] |
Geddes G G, Toth C S, Tilborg J V, Esarey E, Schroeder C B, Bruhwiler D, Nieter C, Cary J and Leemans W P 2004 Nature 431 538
|
[10] |
Zhong M C, Wang Z Q and Li Y M 2017 Chin. Opt. Lett. 15 051401
|
[11] |
Carbajo S, Nanni E A, Wong L J, Moriena G, Keathley P D, Laurent G, Miller R J D and Kartner F X 2016 Phys. Rev. Accel. Beams 19 021303
|
[12] |
Wu Y, Cunningham E, Zang H, Li J, Chini M, Wang X, Wang Y, Zhao K and Chang Z 2013 Appl. Phys. Lett. 102 201104
|
[13] |
Shirakawa A, Sakane I, Takasaka M and Kobayashi T 1999 Appl. Phys. Lett. 74 2268
|
[14] |
Hädrich S, Demmler S, Rothhardt J, Jocher C, Limpert J and Tünnermann A 2011 Opt. Lett. 36 313
|
[15] |
Liu H J, Zhao W, Chen G F, Wang Y S, Yu L J, Ruan C and Lu K Q 2004 Chin. Phys. Lett. 21 94
|
[16] |
Mourou G, Mironov S, Khazanov E, Sergeev A 2014 Eur. Phys. J. Spec. Top. 223 1181
|
[17] |
Lu C H, Tsou Y J, Chen H Y, Chen B H, Cheng Y C, Yang S D, Chen M C, Hsu C C and Kung A H 2014 Optica 1 400
|
[18] |
Vuong L T, Lopez-Martens R B, Hauri C P and Gaeta A L 2008 Opt. Express 16 390
|
[19] |
Adachi S and Suzuki T 2017 Opt. Lett. 42 1883
|
[20] |
Liu Y H, Sun H Y, Ju J J, Tian Y, Bai Y F, Wang C, Wang T J, Liu J S, Chin S L and Li R X 2016 Chin. Opt. Lett. 14 031401
|
[21] |
Hädrich S, Klenke A, Hoffmann A, Eidam T, Gottschall T, Rothhardt J, Limpert J and Tünnermann A 2013 Opt. Lett. 38 3866
|
[22] |
Nisoli M, Silvestri S D and Svelto O 1996 Appl. Phys. Lett. 68 2793
|
[23] |
Jacqmin H, Jullien A, Mercier B, Hanna M, Druon F, Papadopoulos D and Lopez-Martens R 2015 Opt. Lett. 40 709
|
[24] |
Böhle F, Kretschmar M, Jullien A, Kovacs M, Miranda M, Romero R, Crespo H, Morgner U, Simon P, Lopez-Martens R and Nagy T 2014 Laser Phys. Lett. 11 095401
|
[25] |
Wang D, Leng Y X and Xu Z Z 2012 Opt. Commun. 285 2418
|
[26] |
Kang Z, Yuan J H, Li S, Xie S L, Yan B B, Sang X Z and Yu C X 2013 Chin. Phys. B 22 114211
|
[27] |
Chen H W, Guo L, Jian A J, Chen S P, Hou J and Lu Q S 2013 Acta Phys. Sin. 62 154207 (in Chinese)
|
[28] |
Bohman S, Suda A, Kanai T, Yamaguchi S and Midorikawa K 2010 Opt. Lett. 35 1887
|
[29] |
Cardin V, Thire N, Beaulieu S, Wanie V, Legare F and Schmidt B E 2015 Appl. Phys. Lett. 107 181101
|
[30] |
Dutin C F, Dubrouil A, Petit S, Mével E, Constant E and Descamps D 2010 Opt. Lett. 35 253
|
[31] |
Chen X, Jullien A, Malvache A, Canova L, Borot A, Trisorio A, Durfee C G and Lopez-Martens R 2009 Opt. Lett. 34 1588
|
[32] |
Song L W, Li C, Bai Y, Xu R J, Liu P, Li R X and Xu Z Z 2014 Appl. Phys. B 115 93
|
[33] |
Carbajo S, Granados E, Schimpf D, Sell A, Hong K H, Moses J and Kärtner F X 2014 Opt. Lett. 39 2487
|
[34] |
Wang D, Qiao L L, Zhao R R, Zhao Y and Leng Y X 2017 Opt. Express 25 3083
|
[35] |
Fu Y X, Xiong H, Xu H, Yao J P, Zeng B, Chu W, Cheng Y, Xu Z Z, Liu W W and Chin S L 2009 Opt. Lett. 34 3752
|
[36] |
Rohwetter P, Queißer M, Stelmaszczyk K, Fechner M and Wöste L 2008 Phys. Rev. A 77 013812
|
[37] |
Liu L, Wang C, Cheng Y, Gao H and Liu W W 2011 J. Phys. B: At. Mol. Opt. Phys. 44 215404
|
[38] |
Kolesik M and Moloney J V 2004 Phys. Rev. E 70 036604
|
[39] |
Andreasen J and Kolesik M 2013 Phys. Rev. E 87 053303
|
[40] |
Andreasen J and Kolesik M 2012 Phys. Rev. E 86 036706
|
[41] |
Borodin A V, Panov N A, Kosareva O G, Andreeva V A, Esaulkov M N, Makarov V A, Shkurinov A P, Chin S L and Zhang X C 2013 Opt. Lett. 38 1906
|
[42] |
Perelomov A M, Popov V S and Terent'ev M V 1966 Sov. Phys. JETP 23 924
|
[43] |
Couairon A, Brambilla E, Corti T, Majus D, J Ramírez-Góngora O and Kolesik M 2011 Eur. Phys. J. Spec. Top. 199 5
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|