CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES |
Prev
Next
|
|
|
First-principles study on stability and superconductivity of ternary hydride LaYHx (x =2, 3, 6 and 8) |
Xiao-Zhen Yan(颜小珍)1, Xing-Zi Zhou(周幸姿)1, Chao-Fei Liu(刘超飞)1, Yin-Li Xu(徐寅力)1, Yi-Bin Huang(黄毅斌)1, Xiao-Wei Sheng(盛晓伟)2,3, and Yang-Mei Chen(陈杨梅)1,† |
1 School of Science, Jiangxi University of Science and Technology, Ganzhou 341000, China; 2 Department of Physics, Anhui Normal University, Wuhu 241000, China; 3 Anhui Province Key Laboratory of Optoelectric Materials Science and Technology, Wuhu 241000, China |
|
|
Abstract Recent studies have shown that the La- and Y-hydrides can exhibit significant superconducting properties under high pressures. In this paper, we investigate the stability, electronic and superconducting properties of LaYH$_{x}$ ($x=2$, 3, 6 and 8) under 0-200 GPa. It is found that LaYH$_{2}$ stabilizes in the $C2/m$ phase at ambient pressure, and transforms to the $Pmmn$ phase at 67 GPa. LaYH$_{3}$ stabilizes in the $C2/m$ phase at ambient pressure, and undergoes phase transitions of $C2/m\to P2_{1}/m\to R3m$ at 12 GPa and 87 GPa, respectively. LaYH$_{6}$ stabilizes in the $P4_{3}2_{1}2$ phase at ambient pressure, and undergoes phase transitions of $P4_{3}2_{1}2\to P4/mmm \to Cmcm$ at 28 GPa and 79 GPa, respectively. LaYH$_{8}$ stabilizes in the $Imma$ phase at 60 GPa and transforms to the $P4/mmm$ phase at 117 GPa. Calculations of the electronic band structures show that the $P4/mmm$-LaYH$_{8}$ and all phases of LaYH$_{2}$ and LaYH$_{3}$ exhibit metallic character. For the metallic phases, we then study their superconducting properties. The calculated superconducting transition temperatures ($T_{\rm c}$) are 0.47 K for $C2/m$-LaYH$_{2}$ at 0 GPa, 0 K for $C2/m$-LaYH$_{3}$ at 0 GPa, and 55.51 K for $P4/mmm$-LaYH$_{8}$ at 50 GPa.
|
Received: 25 February 2024
Revised: 22 April 2024
Accepted manuscript online:
|
PACS:
|
74.70.-b
|
(Superconducting materials other than cuprates)
|
|
62.50.-p
|
(High-pressure effects in solids and liquids)
|
|
63.20.dk
|
(First-principles theory)
|
|
87.15.Zg
|
(Phase transitions)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 12364003, 11804131, 11704163, 12375014, and 11875149) and the Natural Science Foundation of Jiangxi Province of China (Grant Nos. 20232BAB211022 and 20181BAB211007). |
Corresponding Authors:
Yang-Mei Chen
E-mail: chenyangmei@jxust.edu.cn
|
Cite this article:
Xiao-Zhen Yan(颜小珍), Xing-Zi Zhou(周幸姿), Chao-Fei Liu(刘超飞), Yin-Li Xu(徐寅力), Yi-Bin Huang(黄毅斌), Xiao-Wei Sheng(盛晓伟), and Yang-Mei Chen(陈杨梅) First-principles study on stability and superconductivity of ternary hydride LaYHx (x =2, 3, 6 and 8) 2024 Chin. Phys. B 33 086301
|
[1] Bardeen J, Cooper L N and Schrieffer J R 1957 Phys. Rev. 108 1175 [2] McMahon J M and Ceperley D M 2011 Phys. Rev. Lett. 106 165302 [3] Ashcroft N W 2004 Phys. Rev. Lett. 92 187002 [4] Duan D, Liu Y, Tian F, Li D, Huang X, Zhao Z, Yu H, Liu B, Tian W and Cui T 2014 Sci. Rep. 4 6968 [5] Drozdov A P, Eremets M I, Troyan I A, Ksenofontov V and Shylin S I 2015 Nature 525 73 [6] Li B, Yang Y, Fan Y, Zhu C, Liu S and Shi Z 2023 Chin. Phys. Lett. 40 097402 [7] Flores-Livas J A, Boeri L, Sanna A, Profeta G, Arita R and Eremets M 2020 Phys. Rep. 856 1 [8] Wang H, Tse J S, Tanaka K, Iitaka T and Ma Y 2012 Proc. Nat. Acad. Sci. USA 109 6463 [9] Drozdov A P, Kong P P, Minkov V S, Besedin S P, Kuzovnikov M A, Mozaffari S, Balicas L, Balakirev F F, Graf D E, Prakapenka V B, Greenberg E, Knyazev D A, Tkacz M and Eremets M I 2019 Nature 569 528 [10] Troyan I A, Semenok D V, Kvashnin A G, Sadakov A V, Sobolevskiy O A, Pudalov V M, Ivanova A G, Prakapenka V B, Greenberg E, Gavriliuk A G, Lyubutin I S, Struzhkin V V, Bergara A, Errea I, Bianco R, Calandra M, Mauri F, Monacelli L, Akashi R and Oganov A R 2021 Adv. Mater. 33 2006832 [11] Chen W, Huang X, Semenok D V and Cui T 2023 Nat. Commun. 14 2660 [12] Wei Y K, Jia L Q, Fang Y Y, Wang L J, Qian Z X, Yuan J N, Selvaraj G, Ji G F and Wei D Q 2021 Int. J. Quantum Chem. 121 e26459 [13] Shao M, Chen S, Chen W, Zhang K, Huang X and Cui T 2021 Inorg. Chem. 60 15330 [14] Li Y, Hao J, Liu H, Tse J S, Wang Y and Ma Y 2015 Sci. Rep. 5 9948 [15] Semenok D V, Troyan I A, Ivanova A G, Kvashnin A G, Kruglov I A, Hanfland M, Sadakov A V, Sobolevskiy O A, Pervakov K S, Lyubutin I S, Glazyrin K V, Giordano N, Karimov D N, Vasiliev A L, Akashi R, Pudalov V M and Oganov A R 2021 Mat. Today 48 18 [16] Peng F, Sun Y, Pickard C J, Needs R J, Wu Q and Ma Y 2017 Phys. Rev. Lett. 119 107001 [17] Kong P, Minkov V S, Kuzovnikov M A, Drozdov A P, Besedin S P, Mozaffari S, Balicas L, Balakirev F F, Prakapenka V B, Chariton S, Knyazev D A, Greenberg E and Eremets M I 2021 Nat. Commun. 12 5075 [18] He D C, Shao H X and Wei Y K 2015 Can. J. Phys. 93 1630 [19] Wang Y, Lv J, Zhu L and Ma Y J P R B 2010 Phys. Rev. B 82 094116 [20] Wang Y, Lv J, Zhu L and Ma Y 2012 Comput. Phys. Commun. 183 2063 [21] Blöchl P E 1994 Phys. Rev. B 50 17953 [22] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169 [23] Perdew J P, Burke K and Ernzerhof M J 1996 Phys. Rev. Lett. 77 3865 [24] Giannozzi P, Baroni S, Bonini N, Calandra M, Car R, Cavazzoni C, Ceresoli D, Chiarotti G L, Cococcioni M, Dabo I, Dal Corso A, de Gironcoli S, Fabris S, Fratesi G, Gebauer R, Gerstmann U, Gougoussis C, Kokalj A, Lazzeri M, Martin-Samos L, Marzari N, Mauri F, Mazzarello R, Paolini S, Pasquarello A, Paulatto L, Sbraccia C, Scandolo S, Sclauzero G, Seitsonen A P, Smogunov A, Umari P and Wentzcovitch R M 2009 J. Phys.: Condens. Matter 21 395502 [25] Liu H, Naumov I I, Hoffmann R, Ashcroft N W and Hemley R J 2017 Proc. Natl. Acad. Sci. USA 114 6990 [26] Spedding F H, Daane A and Herrmann K J 1956 Acta Crystal. 9 559 [27] Pickard C J and Needs R J 2007 J. New Phys. 3 473 [28] Chen Y, Hu Q M and Yang R 2011 Phys. Rev. B 84 132101 [29] Chen Y, Hu Q M and Yang R 2012 Phys. Rev. Lett. 109 157004 [30] Bader R F 1990 Atoms in molecules, Wiley Online Library [31] Yang J W, Gao T and Guo L Y 2013 Physica B 429 119 [32] Lv J, Sun Y, Liu H and Ma Y 2020 Matter Radiat. Extrem. 5 068101 [33] Di Cataldo S, von der Linden W and Boeri L 2022 npj Comput. Mater. 8 2 [34] Allen P B and Dynes R C 1975 Phys. Rev. B 12 905 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|