Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(8): 084203    DOI: 10.1088/1674-1056/ad47b0
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Enhanced picosecond terahertz wave generation based on cascade effects in a terahertz parametric generator

Jingxi Zhang(张敬喜)1,2, Yuye Wang(王与烨)1,2,†, Bingfeng Xu(徐炳烽)1,2, Kai Chen(陈锴)1,2, Zikun Liu(刘紫鲲)1,2, Hongru Ma(马鸿儒)1,2, Degang Xu(徐德刚)1,2, and Jianquan Yao(姚建铨)1,2
1 School of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin 300072, China;
2 Key Laboratory of Optoelectronic Information Technology (Ministry of Education), Tianjin University, Tianjin 300072, China
Abstract  Enhanced terahertz wave generation via a Stokes cascade process has been demonstrated using picosecond pulse pumped terahertz parametric generation at 1 kHz repetition rate. Clear cascade saturation of terahertz output was observed, and the corresponding cascade-Stokes spectra were analyzed. The maximum terahertz wave average power was 22 μW under a pump power of 30 W, whereas the maximum power conversion efficiency was 8$\times10^{-7}$ under a pump power of 21 W. The THz power fluctuation was measured to be about 1% in 20 min. This THz parametric source with a relatively stable output is suitable for a variety of practical applications.
Keywords:  terahertz parametric generation      stimulated polariton      cascade effect      CLN crystal  
Received:  15 March 2024      Revised:  22 April 2024      Accepted manuscript online: 
PACS:  42.60.-v (Laser optical systems: design and operation)  
  42.65.-k (Nonlinear optics)  
  42.65.Dr (Stimulated Raman scattering; CARS)  
  87.50.U-  
Fund: This research was funded by the National Natural Science Foundation of China (Grant Nos. U22A20353, U22A20123, 62175182, and 62275193).
Corresponding Authors:  Yuye Wang     E-mail:  yuyewang@tju.edu.cn

Cite this article: 

Jingxi Zhang(张敬喜), Yuye Wang(王与烨), Bingfeng Xu(徐炳烽), Kai Chen(陈锴), Zikun Liu(刘紫鲲), Hongru Ma(马鸿儒), Degang Xu(徐德刚), and Jianquan Yao(姚建铨) Enhanced picosecond terahertz wave generation based on cascade effects in a terahertz parametric generator 2024 Chin. Phys. B 33 084203

[1] Siegel P H 2002 IEEE Trans. Microw. Theory Techn. 50 910
[2] Tonouchi M 2007 Nat. Photon. 1 97
[3] Kawase K, Shikata J and Ito H 2002 J. Phys. D 35 R1
[4] Yarborough J M, Sussman S S, Puthoff H E, Pantell R H and Johnson B C 1969 Appl. Phys. Lett. 15 102
[5] Vodopyanov K L 2006 Opt. Express 14 2263
[6] Ikari T, Zhang X B, Minamide H and Ito H 2006 Opt. Express 14 1604
[7] Imai K, Kawase K, Shikata J, Minamide H and Ito H 2001 Appl. Phys. Lett. 78 1026
[8] Tang L H, Xu D G, Wang Y Y, Yan C, He Y X, Li J N, Zhong K and Yao J Q 2019 Opt. Express 27 22808
[9] Edwards T J, Walsh D, Spurr M B, Rae C F, Dunn M H and Browne P G 2006 Opt. Express 14 1582
[10] Gao F L, Zhang X Y, Cong Z H, Liu Z J, Chen X H, Qin Z G, Wang P, Xu J J, Wang W T and Zhang S J 2020 IEEE Photonics Journal 12 1400109
[11] Ortega T A, Pask H M, Spence D J and Lee A J 2017 Opt. Express 25 3991
[12] Nawata K, Hayashi S, Ishizuki H, Murate K, Imayama K, Takida Y, Yahia V, Taira T, Kawase K and Minamide H 2017 IEEE Trans. Terahertz Sci. Technol. 7 617
[13] Hayashi S, Nawata K, Taira T, Shikata J, Kawase K and Minamide H 2014 Sci. Rep. 4 5045
[14] Warrier A M, Li R, Lin J P, Lee A J, Pask H M and Spence D J 2016 Opt. Lett. 41 4409
[15] Takida Y, Ohira T, Tadokoro Y, Kumagai H and Nashima S 2013 IEEE Journal of Selected Topics in Quantum Electronics 19 8500307
[16] Yan C, Xu D G, Wang Y Y, Wang Z H, Wei Z Y, Tang L H, He Y X, Li J N, Zhong K, Shi W and Yao J Q 2019 IEEE Photonics Journal 11 5900908
[17] Li W F, Qi F, Liu P, X Wang Y L and Li Z Y 2022 Opt. Lett. 47 178
[18] Powers P E and Haus J W 2017 Fundamentals of Nonlinear Optics (2nd edn.) (Boca Raton: CRC Press, Taylor & Francis) pp. 139-141
[1] Topological laser on square lattice with gain-loss-induced higher-order corner modes
Ming-Jie Liao(廖明杰), Mei-Song Wei(韦梅松), Shuailing Wang(王帅领), Jingping Xu(许静平), and Yaping Yang(羊亚平). Chin. Phys. B, 2024, 33(6): 060305.
[2] Gigahertz frequency hopping in an optical phase-locked loop for Raman lasers
Dekai Mao(毛德凯), Hongmian Shui(税鸿冕), Guoling Yin(殷国玲), Peng Peng(彭鹏), Chunwei Wang(王春唯), and Xiaoji Zhou(周小计). Chin. Phys. B, 2024, 33(2): 024209.
[3] Finesse measurement for high-power optical enhancement cavity
Xin-Yi Lu(陆心怡), Xing Liu(柳兴), Qi-Li Tian(田其立), Huan Wang(王焕), Jia-Jun Wang(汪嘉俊), and Li-Xin Yan(颜立新). Chin. Phys. B, 2024, 33(1): 014205.
[4] Milli-Joule pulses post-compressed from 14 ps to 475 fs in bulk-material multi-pass cell based on cylindrical vector beam
Xu Zhang(张旭), Zhaohua Wang(王兆华), Xianzhi Wang(王羡之), Jiawen Li(李佳文), Jiajun Li(李佳俊), Guodong Zhao(赵国栋), and Zhiyi Wei(魏志义). Chin. Phys. B, 2023, 32(10): 104206.
[5] Continuous-wave optical enhancement cavity with 30-kW average power
Xing Liu(柳兴), Xin-Yi Lu(陆心怡), Huan Wang(王焕), Li-Xin Yan(颜立新), Ren-Kai Li(李任恺), Wen-Hui Huang(黄文会), Chuan-Xiang Tang(唐传祥), Ronic Chiche, and Fabian Zomer. Chin. Phys. B, 2023, 32(3): 034206.
[6] Estimation of far-field wavefront error of tilt-to-length distortion coupling in space-based gravitational wave detection
Ya-Zheng Tao(陶雅正), Hong-Bo Jin(金洪波), and Yue-Liang Wu(吴岳良). Chin. Phys. B, 2023, 32(2): 024212.
[7] Effects of pulse energy ratios on plasma characteristics of dual-pulse fiber-optic laser-induced breakdown spectroscopy
Yu-Hua Hang(杭玉桦), Yan Qiu(邱岩), Ying Zhou(周颖), Tao Liu(刘韬), Bin Zhu(朱斌), Kaixing Liao(廖开星), Ming-Xin Shi(时铭鑫), and Fei Xue(薛飞). Chin. Phys. B, 2022, 31(2): 024212.
[8] High-sensitive terahertz detection by parametric up-conversion using nanosecond pulsed laser
Yuye Wang(王与烨), Gang Nie(聂港), Changhao Hu(胡常灏), Kai Chen(陈锴), Chao Yan(闫超), Bin Wu(吴斌), Junfeng Zhu(朱军峰), Degang Xu(徐德刚), and Jianquan Yao(姚建铨). Chin. Phys. B, 2022, 31(2): 024204.
[9] A 61-mJ, 1-kHz cryogenic Yb: YAG laser amplifier
Huijun He(何会军), Jun Yu(余军), Wentao Zhu(朱文涛), Qingdian Lin(林庆典), Xiaoyang Guo(郭晓杨), Cangtao Zhou(周沧涛), and Shuangchen Ruan(阮双琛). Chin. Phys. B, 2021, 30(12): 124206.
[10] A 37 mJ, 100 Hz, high energy single frequency oscillator
Yu Shen(申玉), Yong Bo(薄勇), Nan Zong(宗楠), Shenjin Zhang(张申金), Qinjun Peng(彭钦军), and Zuyan Xu(许祖彦). Chin. Phys. B, 2021, 30(8): 084208.
[11] Spectral polarization-encoding of broadband laser pulses by optical rotatory dispersion and its applications in spectral manipulation
Xiaowei Lu(陆小微), Congying Wang(王聪颖), Xuanke Zeng(曾选科), Jiahe Lin(林家和), Yi Cai(蔡懿), Qinggang Lin(林庆钢), Huangcheng Shangguan(上官煌城), Zhenkuan Chen(陈振宽), Shixiang Xu(徐世祥), and Jingzhen Li(李景镇). Chin. Phys. B, 2021, 30(7): 077801.
[12] Interference properties of a trapped atom interferometer in two asymmetric optical dipole traps
Li-Yong Wang(王立勇), Xiao Li(李潇), Kun-Peng Wang(王坤鹏), Yin-Xue Zhao(赵吟雪), Ke Di(邸克), Jia-Jia Du(杜佳佳), and Jian-Gong Hu(胡建功). Chin. Phys. B, 2020, 29(12): 123701.
[13] Unconventional photon blockade in a three-mode system with double second-order nonlinear coupling
Hong-Yu Lin(林宏宇), Hui Yang(杨慧), and Zhi-Hai Yao(姚治海). Chin. Phys. B, 2020, 29(12): 120304.
[14] High-performance frequency stabilization of ultraviolet diode lasers by using dichroic atomic vapor spectroscopy and transfer cavity
Danna Shen(申丹娜), Liangyu Ding(丁亮宇), Qiuxin Zhang(张球新), Chenhao Zhu(朱晨昊), Yuxin Wang(王玉欣), Wei Zhang(张威), Xiang Zhang(张翔). Chin. Phys. B, 2020, 29(7): 074210.
[15] 7.6-W diode-pumped femtosecond Yb: KGW laser
Yan-Fang Cao(曹艳芳), Xiang-Hao Meng(孟祥昊), Jun-Li Wang(王军利), Zhao-Hua Wang(王兆华), Meng-Yao Cheng(程梦尧), Jiang-Feng Zhu(朱江峰), Zhi-Yi Wei(魏志义). Chin. Phys. B, 2019, 28(4): 044205.
No Suggested Reading articles found!