Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(8): 084204    DOI: 10.1088/1674-1056/ad4324
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Design of a high sensitivity and wide range angular rate sensor based on exceptional surface

Xinsheng Ding(丁鑫圣)1, Wenyao Liu(刘文耀)1,2,†, Shixian Wang(王师贤)1, Yu Tao(陶煜)1, Yanru Zhou(周彦汝)1,2, Yu Bai(白禹)1,2, Lai Liu(刘来)1,2, Enbo Xing(邢恩博)1,2, Jun Tang(唐军)1,2,‡, and Jun Liu(刘俊)1,2,§
1 State Key Laboratory of Dynamic Measurement Technology, North University of China, Taiyuan 030051, China;
2 Shanxi Province Key Laboratory of Quantum Sensing and Precision Measurement, North University of China, Taiyuan 030051, China
Abstract  It is found that when the parity-time symmetry phenomenon is introduced into the resonant optical gyro system and it works near the exceptional point, the sensitivity can in theory be significantly amplified at low angular rate. However, in fact, the exceptional point is easily disturbed by external environmental variables, which means that it depends on harsh experimental environment and strong control ability, so it is difficult to move towards practical application. Here, we propose a new angular rate sensor structure based on exceptional surface, which has the advantages of high sensitivity and high robustness. The system consists of two fiber-optic ring resonators and two optical loop mirrors, and one of the resonators contains a variable ratio coupler and a variable optical attenuator. We theoretically analyze the system response, and the effects of phase and coupling ratio on the system response. Finally, compared with the conventional resonant gyro, the sensitivity of this exceptional surface angular rate sensor can be improved by about 300 times at low speed. In addition, by changing the loss coefficient in the ring resonator, we can achieve a wide range of 600 rad/s. This scheme provides a new approach for the development of ultra-high sensitivity and wide range angular rate sensors in the future.
Keywords:  exceptional surface      exceptional points      ring resonator      angular rate sensing      rotational direction recognition      wide operating range  
Received:  21 November 2023      Revised:  24 April 2024      Accepted manuscript online: 
PACS:  42.81.Pa (Sensors, gyros)  
  42.81.Qb (Fiber waveguides, couplers, and arrays)  
Fund: Project supported in part by the National Natural Science Foundation of China (Grant Nos. 62273314, U21A20141, and 51821003); Fundamental Research Program of Shanxi Province (Grant No. 202303021224008); and Shanxi Province Key Laboratory of Quantum Sensing and Precision Measurement (Grant No. 201905D121001).
Corresponding Authors:  Wenyao Liu, Jun Tang, Jun Liu     E-mail:  liuwenyao@nuc.edu.cn;tangjun@nuc.edu.cn;liuj@nuc.edu.cn

Cite this article: 

Xinsheng Ding(丁鑫圣), Wenyao Liu(刘文耀), Shixian Wang(王师贤), Yu Tao(陶煜), Yanru Zhou(周彦汝), Yu Bai(白禹), Lai Liu(刘来), Enbo Xing(邢恩博), Jun Tang(唐军), and Jun Liu(刘俊) Design of a high sensitivity and wide range angular rate sensor based on exceptional surface 2024 Chin. Phys. B 33 084204

[1] Liu S, Hu J, Wang Y, Liu Q, Ma H and He Z 2023 Opt. Lett. 48 1152
[2] Liu H D, Liu W Y, Zhao R, Pan Z W, Ding S X, Tao Y, Zhang W, Zhou Y R, Xing E B, Tang J, Liu J and Chen J J 2023 Opt. Commun. 533 129285
[3] Li H, Ni P, Wang Q, Feng C and Feng L 2021 Journal of Lightwave Technology 39 1858
[4] Wang C, Jiang X, Zhao G, Zhang M, Hsu C W, Peng B, Stone A D, Jiang L and Yang L 2020 Nat. Phys. 16 334
[5] Grant M J and Digonnet M J F 2020 Opt. Lett. 45 6538
[6] Li A, Wei H, Cotrufo M, Chen W, Mann S, Ni X, Xu B, Chen J, Wang J, Fan S, Qiu C W, Alu A and Chen L 2023 Nat. Nanotechnol. 18 706
[7] Lee S B, Yang J, Moon S, Lee S Y, Shim J B, Kim S W, Lee J H and An K 2009 Phys. Rev. Lett. 103 134101
[8] Wiersig J 2016 Phys. Rev. A 93 033809
[9] Katsantonis I, Droulias S, Soukoulis C M, Economou E N, Rakitzis T P and Kafesaki M 2022 Phys. Rev. B 105 174112
[10] Xing T, Pan Z, Tao Y, Xing G, Wang R, Liu W, Xing E, Rong J, Tang J and Liu J 2020 J. Phys. D Appl. Phys. 53 205102
[11] Wang K, Xiao L, Lin H, Yi W, Bergholtz E J and Xue P 2023 Sci. Adv. 9 eadi0732
[12] Zhong Q, Kou J, Ozdemir S K and El-Ganainy R 2020 Phys. Rev. Lett. 125 203602
[13] Zhang H, Li W, Han P, Chang X, Liu J, Huang A and Xiao Z 2019 J. Appl. Phys. 125 084502
[14] De Carlo M, De Leonardis F, Lamberti L and Passaro V M N 2019 Opt. Lett. 44 3956
[15] Chen T, Xiao Z, Jiang S, Li W, Li J, Wang Y, Wang X, Huang A and Zhang H 2022 J. Appl. Phys. 131 243101
[16] Yang F, Liu Y C and You L 2017 Phys. Rev. A 96 053845
[17] Zhang H, Peng M, Xu X W and Jing H 2022 Chin. Phys. B 31 014215
[18] Li W, Zhang H, Han P, Chang X, Jiang S, Zhou Y, Huang A and Xiao Z 2020 J. Appl. Phys. 128 134503
[19] Lai Y H, Suh M G, Lu Y K, Shen B, Yang Q F, Wang H, Li J, Lee S H, Yang K Y and Vahala K 2020 Nat. Photon. 14 345
[20] Lai Y H, Lu Y K, Suh M G, Yuan Z and Vahala K 2019 Nature 576 65
[21] Khial P P, White A D and Hajimiri A 2018 Nat. Photon. 12 671
[22] Jiang S, Chang X, Li W, Han P, Zhou Y, Zhang H, Huang A and Xiao Z 2019 J. Opt. Soc. Am. B Opt. Phys. 36 2618
[23] Wiersig J 2022 Phys. Rev. A 106 063526
[24] Zhong Q, Ren J, Khajavikhan M, Christodoulides D N, Ozdemir S K and El-Ganainy R 2019 Phys. Rev. Lett. 122 153902
[25] Qin G Q, Xie R R, Zhang H, Hu Y Q, Wang M, Li G Q, Xu H, Lei F, Ruan D and Long G L 2021 Laser & Photonics Reviews 15 2000569
[26] Soleymani S, Zhong Q, Mokim M, Rotter S, El-Ganainy R and Ozdemir S K 2022 Nat. Commun. 13 599
[27] Yang H, Mao X, Qin G Q, Wang M, Zhang H, Ruan D and Long G L 2021 Opt. Lett. 46 4025
[28] Li W, Zhou Y, Han P, Chang X, Jiang S, Huang A, Zhang H and Xiao Z 2021 Phys. Rev. A 104 033505
[29] Doran N J and Wood D 1988 Opt. Lett. 13 56
[30] Mortimore D B 1988 Journal of Lightwave Technology 6 1217
[1] Theory of complex-coordinate transformation acoustics for non-Hermitian metamaterials
Hao-Xiang Li(李澔翔), Yang Tan(谭杨), Jing Yang(杨京), and Bin Liang(梁彬). Chin. Phys. B, 2023, 32(9): 094301.
[2] Design and simulation of a silicon-based hybrid integrated optical gyroscope system
Dao-Xin Sun(孙道鑫), Dong-Liang Zhang(张东亮), Li-Dan Lu(鹿利单), Tao Xu(徐涛),Xian-Tong Zheng(郑显通), Zhe-Hai Zhou(周哲海), and Lian-Qing Zhu(祝连庆). Chin. Phys. B, 2023, 32(4): 044212.
[3] Classic analogue of Autler-Townes-splitting transparency using a single magneto-optical ring resonator
Liting Wu(吴利婷), Wenkang Cao(曹文康), and Haolin Jiang(蒋昊林). Chin. Phys. B, 2023, 32(10): 104201.
[4] High-performance and fabrication friendly polarization demultiplexer
Huan Guan(关欢), Yang Liu(刘阳), and Zhiyong Li (李智勇). Chin. Phys. B, 2022, 31(3): 034203.
[5] Bright 547-dimensional Hilbert-space entangled resource in 28-pair modes biphoton frequency comb from a reconfigurable silicon microring resonator
Qilin Zheng(郑骑林), Jiacheng Liu(刘嘉成), Chao Wu(吴超), Shichuan Xue(薛诗川), Pingyu Zhu(朱枰谕), Yang Wang(王洋), Xinyao Yu(于馨瑶), Miaomiao Yu(余苗苗), Mingtang Deng(邓明堂), Junjie Wu(吴俊杰), and Ping Xu(徐平). Chin. Phys. B, 2022, 31(2): 024206.
[6] Bandwidth-tunable silicon nitride microring resonators
Jiacheng Liu(刘嘉成), Chao Wu(吴超), Gongyu Xia(夏功榆), Qilin Zheng(郑骑林), Zhihong Zhu(朱志宏), and Ping Xu(徐平). Chin. Phys. B, 2022, 31(1): 014201.
[7] Design of sextuple-mode triple-ring HTS UWB filter using two-round interpolation
Ming-En Tian(田明恩), Zhi-He Long(龙之河), You Lan(蓝友), Lei-Lei He(贺磊磊), and Tian-Liang Zhang(张天良). Chin. Phys. B, 2021, 30(5): 058503.
[8] Quantum exceptional points of non-Hermitian Hamiltonian and Liouvillian in dissipative quantum Rabi model
Xianfeng Ou(欧先锋), Jiahao Huang(黄嘉豪), and Chaohong Lee(李朝红). Chin. Phys. B, 2021, 30(11): 110309.
[9] Coupled resonator-induced transparency on a three-ring resonator
Xinquan Jiao(焦新泉), Haobo Yu(于皓博), Miao Yu(于淼), Chenyang Xue(薛晨阳), Yongfeng Ren(任勇峰). Chin. Phys. B, 2018, 27(7): 074212.
[10] Theoretical study on the lasing plasmon of a split ring for label-free detection of single molecules and single nanoparticles
Chunjie Zheng(郑春杰), Tianqing Jia(贾天卿), Hua Zhao(赵华), Yingjie Xia(夏英杰), Shian Zhang(张诗按), Zhenrong Sun(孙真荣). Chin. Phys. B, 2018, 27(5): 057802.
[11] Possible generation of π-condensation in a free space by collisions between photons and protons
Qi-Ren Zhang(张启仁). Chin. Phys. B, 2018, 27(12): 120306.
[12] Origin of strain-induced resonances in flexible terahertz metamaterials
Xiu-Yun Sun(孙秀云), Li-Ren Zheng(郑立人), Xiao-Ning Li(李枭宁), Hua Xu(徐华), Xian-Ting Liang(梁先庭), Xian-Peng Zhang(张贤鹏), Yue-Hui Lu(鲁越晖), Young-Pak Lee, Joo-Yull Rhee, Wei-Jie Song(宋伟杰). Chin. Phys. B, 2016, 25(5): 057802.
[13] Band-stop optical nanofilters with split-ring resonators based on metal-insulator-metal structure
Zhang Hui-Yun (张会云), Shen Duan-Long (申端龙), Zhang Yu-Ping (张玉萍), Yang Wei-Jie (杨伟杰), Yuan Cai (袁偲), Liu Meng (刘蒙), Yin Yi-Heng (尹贻恒), Wu Zhi-Xin (吴志心). Chin. Phys. B, 2014, 23(9): 097301.
[14] Effects of oblique incidence on terahertz responses of planar split-ring resonators
Pan Xue-Cong (潘学聪), Xia Xiao-Xiang (夏晓翔), Wang Li (汪力). Chin. Phys. B, 2014, 23(5): 057804.
[15] Highly sensitive digital optical sensor with large measurement range based on the dual-microring resonator with waveguide-coupled feedback
Xiang Xing-Ye (向星烨), Wang Kui-Ru (王葵如), Yuan Jin-Hui (苑金辉), Jin Bo-Yuan (晋博源), Sang Xin-Zhu (桑新柱), Yu Chong-Xiu (余重秀). Chin. Phys. B, 2014, 23(3): 034206.
No Suggested Reading articles found!