Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(6): 060305    DOI: 10.1088/1674-1056/ad322a
GENERAL Prev   Next  

Topological laser on square lattice with gain-loss-induced higher-order corner modes

Ming-Jie Liao(廖明杰), Mei-Song Wei(韦梅松), Shuailing Wang(王帅领), Jingping Xu(许静平)†, and Yaping Yang(羊亚平)‡
MOE Key Laboratory of Advanced Micro-Structured Materials, School of Physics Science and Engineering, Tongji University, Shanghai 200092, China
Abstract  We investigate the higher-order topological laser in the two-dimensional (2D) coupled-cavity array. By adding staggered on-site gain and loss to the 2D Hermitian array with a trivial phase, the system will emerge degenerate topological corner modes, which are protected by bulk band gap. For such a non-Hermitian model, by adjusting the parameters of the system and introducing the pumping into the cavity at the corner, a single-mode lasing with topological protection emerges. Furthermore, single-mode lasing exists over a wide range of pumping strengths. No matter where the cavity is initially stimulated, after enough time evolution, all the cavities belonging to the topological corner mode can emit a stable laser.
Keywords:  topological corner modes      nonlinear saturated gain      single-mode lasing  
Received:  26 December 2023      Revised:  26 February 2024      Accepted manuscript online:  11 March 2024
PACS:  03.65.Vf (Phases: geometric; dynamic or topological)  
  03.65.Vf (Phases: geometric; dynamic or topological)  
  42.60.By (Design of specific laser systems)  
  42.60.-v (Laser optical systems: design and operation)  
Fund: This work was supported by the National Natural Science Foundation of China (Grant Nos. 12274326 and 12174288) and the National Key R&D Program of China (Grant No. 2021YFA1400602).
Corresponding Authors:  Jingping Xu, Yaping Yang     E-mail:  xx_jj_pp@tongji.edu.cn;yang_yaping@tongji.edu.cn

Cite this article: 

Ming-Jie Liao(廖明杰), Mei-Song Wei(韦梅松), Shuailing Wang(王帅领), Jingping Xu(许静平), and Yaping Yang(羊亚平) Topological laser on square lattice with gain-loss-induced higher-order corner modes 2024 Chin. Phys. B 33 060305

[1] Qi X L and Zhang S C 2011 Rev. Mod. Phys. 83 1057
[2] Haldane F D M and Raghu S 2008 Phys. Rev. Lett. 100 013904
[3] Raghu S and Haldane F D M 2008 Phys. Rev. A 78 033834
[4] Khanikaev A B, Mousavi S H, Tse W K, Kargarian M, MacDonald A H and Shvets G 2013 Nat. Mater. 12 233
[5] Hafezi M, Mittal S, Fan J, Migdall A and Taylor J M 2013 Nat. Photon. 7 1001
[6] Rechtsman M C, Zeuner J M, Plotnik Y, Lumer Y, Podolsky D, Dreisow F, Nolte S, Segev M and Szameit A 2013 Nature 496 196
[7] Wu L H and Hu X 2015 Phys. Rev. Lett. 114 223901
[8] Leykam D and Chong Y D 2016 Phys. Rev. Lett. 117 143901
[9] Slobozhanyuk A P, Khanikaev A B, Filonov D S, Smirnova D A, Miroshnichenko A E and Kivshar Y S 2016 Sci. Rep. 6 22270
[10] Khanikaev A B and Shvets G 2017 Nat. Photon. 11 763
[11] Ota Y, Katsumi R, Watanabe K, Iwamoto S and Arakawa Y 2018 Commun. Phys. 1 86
[12] Ota Y, Liu F, Katsumi R, Watanabe K, Wakabayashi K, Arakawa Y and Iwamoto S 2019 Optica 6 786
[13] Hassan A E, Kunst F K, Moritz A, Andler G, Bergholtz E J and Bourennane M 2019 Nat. Photon. 13 697
[14] Yoshimi H, Yamaguchi T, Ota Y, Arakawa Y and Iwamoto S 2020 Opt. Lett. 45 2648
[15] Prodan E and Prodan C 2009 Phys. Rev. Lett. 103 248101
[16] Yang Z J, Gao F, Shi X H, Lin X, Gao Z, Chong Y Y and Zhang B L 2015 Phys. Rev. Lett. 114 114301
[17] Stenull O, Kane C L and Lubensky T C 2016 Phys. Rev. Lett. 117 068001
[18] Liu Y Z, Xu Y, Zhang S C and Duan W H 2017 Phys. Rev. B 96 064106
[19] Singh S, Wu Q S, Yue C M, Romero A H and Soluyanov A A 2018 Phys. Rev. Mater. 2 114204
[20] Saha K and Garate I 2014 Phys. Rev. B 89 205103
[21] Li J X, Wang L, Liu J X, Li R H, Zhang Z Y and Chen X Q 2020 Phys. Rev. B 101 081403
[22] Ren H J, Shah T, Pfeifer H, Brendel C, Peano V, Marquardt F and Painter O 2022 Nat. Commun. 13 3476
[23] Liu Y Z, Zou N L, Zhao S B, Chen X B, Xu Y and Duan W H 2022 Nano Lett. 22 2120
[24] Yang Y, Wang J H, Liu Y, Cui Y T, Ding G Q and Wang X T 2023 Phys. Rev. B 107 024304
[25] Amigo M G, Vergniory M G, Errea I and Manes J L 2023 Phys. Rev. B 107 144307
[26] Ningyuan J, Owens C, Sommer A, Schuster D and Simon J 2015 Phys. Rev. X 5 021031
[27] Albert V V, Glazman L I and Jiang L 2015 Phys. Rev. Lett. 114 173902
[28] Hadad Y, Soric J C, Khanikaev A B and Alù A 2018 Nat. Electron. 1 178
[29] Zhao E 2018 Ann Phys. 399 289
[30] Lee C H, Imhof S, Berger C, Bayer F, Brehm J, Molenkamp L W, Kiessling T and Thomale R 2018 Commun. Phys. 1 39
[31] Imhof S, Berger C, Bayer F, Brehm J, Molenkamp L W, Kiessling T, Schindler F, Lee C H, Greiter M, Neupert T and Thomale R 2018 Nat. Phys. 14 925
[32] Liu S, Ma S J, Zhang Q, Zhang L, Yang C H, You O, Gao W L, Xiang J Y, Cui T J and Zhang S 2020 Light Sci. Appl. 9 145
[33] Wang Y, Price H M, Zhang B L and Chong Y D 2020 Nat. Commun. 22 2356
[34] Olekhno N A, Kretov E I, Stepanenko A A, Ivanova P A, Yaroshenko V V, Puhtina E M, Filonov D S, Cappello B, Matekovits L and Gorlach M A 2022 Nat. Commun. 11 1436
[35] Zou D Y, Chen T, He W J, Bao J C, Lee CH H, Sun H J and Zhang X D 2021 Nat. Commun. 12 7201
[36] Shi A Q, Peng Y W, Jiang J P, Peng Y C, Peng P, Chen J Z, Chen H S, Wen S C, Lin X, Gao F and Liu J J 2024 Laser Photon. Rev. 2024 2300956
[37] Liu X Y, Lin Z Y, Song W E, Sun J C, Huang C Y, Wu S J, Xiao X J, Xin H R, Zhu S N and Li T 2024 Phys. Rev. Lett. 132 016601
[38] On M B, Ashtiani F, Sanchez-Jacome D, Perez-Lopez D, Yoo S J B and Blanco-Redondo A 2024 Nat. Commun. 15 629
[39] Xu Q X, Peng Y C, Shi A Q, Peng P and Liu J J 2024 J. Opt. Soc. Am. A 41 366
[40] Khanikaev A B and Alù A 2024 Nat. Commun. 15 931
[41] Fritzsche A, Biesenthal T, Maczewsky L J, Becker K, Ehrhardt M, Heinrich M, Thomale R, Joglekar Y N and Szameit A 2024 Nat. Mater. 23 377
[42] Guo H M and Franz M 2009 Phys. Rev. B 80 113102
[43] Xue H Y, Yang Y H, Gao F, Chong Y D and Zhang B L 2019 Nat. Mater. 18 108
[44] Lu X C, Chen Y and Chen H Y 2020 Phys. Rev. B 101 195143
[45] Shen K, Deng W M, Mo H C, Shi F L, Ma F, Chen X D and Dong J W 2023 Opt. Lett. 48 2825
[46] Ma H Y, Zhang Z, Fu P H, Wu J S and Yu X L 2022 Phys. Rev. B 106 245109
[47] Li C A, Choi S J, Zhang S B and Trauzettel B 2022 Phys. Rev. Res. 4 023193
[48] Li S, Yan X X, Gao J H and Hu Y 2022 Opt. Express 30 17054
[49] Zhang W H, Xie X, Hao H M, Dang J C, Xiao S, Shi S S, Ni H Q, Niu Z C, Wang C, Jin K J, Zhang X D, and Xu X L 2020 Light Sci. Appl. 9 109
[50] Wei M S, Liao M J, Wang C, Zhu C J, Yang Y P and Xu J P 2023 Opt. Express 31 3427
[51] Bahari B, Ndao A, Vallini F, Amili A E, Fainman Y and Kanté B 2017 Science 358 636
[52] Harari G, Bandres M A, Lumer Y, Rechtsman M C, Chong Y D, Khajavikhan M, Christodoulides D N and Segev M 2018 Science 359 eaar4003
[53] Bandres M A, Wittek S, Harari G, Parto M, Ren J H, Segev M, Christodoulides D N and Khajavikhan M 2018 Science 359 eaar4005
[54] Zeng Y Q, Chattopadhyay U, Zhu B F, Qiang B, Li J H, Jin Y H, Li L H, Davies A G, Linfield E H, Zhang B L, Chong Y D and Wang Q J 2020 Nature 578 246
[55] Amelio I and Carusotto I 2020 Phys. Rev. X 10 041060
[56] Shao Z K, Chen H Z, Wang S, Mao X R, Yang Z Q, Wang S L, Wang X X, Hu X and Ma R M 2020 Nat. Nanotechnol. 15 67
[57] Pelous A L, Amelio I, Seclĺ M and Carusotto I 2021 Phys. Rev. A 104 053516
[58] Zhong H, Kartashov Y V, Szameit A, Li Y D, Liu C L and Zhang Y Q 2021 APL Photon. 6 040802
[59] Ezawa M 2022 Phys. Rev. Res. 4 013195
[60] Gong Y K, Wong S, Bennett A J, Huffaker D L and Oh S S 2022 ACS Photon. 7 2089
[61] Tian J Y, Tan Q Y, Wang Y T, Yang Y H, Yuan G H, Adamo G and Soci C 2023 Nat. Commun. 14 1433
[62] Wu J Q, Ghosh S J, Gan Y S, Shi Y, Mandal S, Sun H D, Zhang B L, Liew T C H, Su R and Xiong Q H 2023 Sci. Adv. 9 eadg4322
[63] Han S, Cui J Y, Chua Y D, Zeng Y Q, Hu L X, Dai M J, Wang F K, Sun F Y, Zhu S, Li L H, Davies A G, Linfield E H, Tan C S, Kivshar Y and Wang Q J 2023 Light Sci. Appl. 12 145
[64] Longhi S, Gatti D and Valle G D 2015 Sci. Rep. 5 13376
[65] Mittal S, Orre V V, Zhu G Y, Gorlach M A, Poddubny A and Hafezi M 2019 Nat. Photon. 13 692
[66] Wheeler W A, Wagner L K and Hughes T L 2019 Phys. Rev. B 100 245135
[67] Luo X W and Zhang C W 2019 Phys. Rev. Lett. 123 073601
[68] Wei Y Z, Yan B, Peng Y C, Shi A Q, Zhao D Y, Peng R, Xiang Y J and Liu J J 2021 Opt. Lett. 46 3941
[69] Zhu B F, Wang Q, Zeng Y Q, Wang Q J and Chong Y D 2021 Phys. Rev. B 104 L140306
[70] Benalcazar W A, Bernevig B A and Hughes T L 2017 Phys. Rev. B 96 245115
[71] Zhu B F, Wang Q, Leykam D L, Xue H R, Wang Q J and Chong Y D 2022 Phys. Rev. Lett 129 013903
[1] Robust optical mode converter based on topological waveguide arrays
Yu-Xiang Xu(徐宇翔), Wen-Jian Tang(唐文剑), Li-Wei Jiang(姜力炜), De-Xing Wu(吴德兴), Heng Wang(王恒), Bing-Cong Xu(许冰聪), and Lin Chen(陈林). Chin. Phys. B, 2024, 33(6): 060306.
[2] Photoinduced Floquet higher-order Weyl semimetal in C6 symmetric Dirac semimetals
Xin-Xin Xu(许欣欣), Zi-Ming Wang(王梓名), Dong-Hui Xu(许东辉), and Chui-Zhen Chen(陈垂针). Chin. Phys. B, 2024, 33(6): 067801.
[3] Topological edge and corner states of valley photonic crystals with zipper-like boundary conditions
Yun-Feng Shen(沈云峰), Xiao-Fang Xu(许孝芳), Ming Sun(孙铭), Wen-Ji Zhou(周文佶), and Ya-Jing Chang(常雅箐). Chin. Phys. B, 2024, 33(4): 044203.
[4] Quantum geometric tensor and the topological characterization of the extended Su-Schrieffer-Heeger model
Xiang-Long Zeng(曾相龙), Wen-Xi Lai(赖文喜), Yi-Wen Wei(魏祎雯), and Yu-Quan Ma(马余全). Chin. Phys. B, 2024, 33(3): 030310.
[5] Progress and realization platforms of dynamic topological photonics
Qiu-Chen Yan(闫秋辰), Rui Ma(马睿), Xiao-Yong Hu(胡小永), and Qi-Huang Gong(龚旗煌). Chin. Phys. B, 2024, 33(1): 010301.
[6] Observation of flat-band localized state in a one-dimensional diamond momentum lattice of ultracold atoms
Chao Zeng(曾超), Yue-Ran Shi(石悦然), Yi-Yi Mao(毛一屹), Fei-Fei Wu(武菲菲), Yan-Jun Xie(谢岩骏), Tao Yuan(苑涛), Han-Ning Dai(戴汉宁), and Yu-Ao Chen(陈宇翱). Chin. Phys. B, 2024, 33(1): 010303.
[7] Higher-order topological Anderson insulator on the Sierpiński lattice
Huan Chen(陈焕), Zheng-Rong Liu(刘峥嵘), Rui Chen(陈锐), and Bin Zhou(周斌). Chin. Phys. B, 2024, 33(1): 017202.
[8] Multi-channel terahertz focused beam generator based on shared-aperture metasurface
Jiu-Sheng Li(李九生) and Yi Chen(陈翊). Chin. Phys. B, 2023, 32(12): 124204.
[9] Topological resonators based on hexagonal-star valley photonic crystals
Xin Wan(万鑫), Chenyang Peng(彭晨阳), Gang Li(李港), Junhao Yang(杨俊豪), and Xinyuan Qi(齐新元). Chin. Phys. B, 2023, 32(11): 114208.
[10] Topological states switching and group velocity control in two-dimensional non-reciprocal Hermitian photonic lattice
Yu Lin(林宇), Yuandan Wang(王元旦), Junhao Yang(杨俊豪), Yixuan Fu(符艺萱), and Xinyuan Qi(齐新元). Chin. Phys. B, 2023, 32(11): 114213.
[11] Off-diagonal approach to the exact solution of quantum integrable systems
Yi Qiao(乔艺), Junpeng Cao(曹俊鹏), Wen-Li Yang(杨文力), Kangjie Shi(石康杰), and Yupeng Wang(王玉鹏). Chin. Phys. B, 2023, 32(11): 117504.
[12] Straight and twisted Weyl nodal line phonons in Ho2CF2 material
Xin-Yue Kang(康鑫越), Jin-Yang Li(李金洋), and Si Li(李思). Chin. Phys. B, 2023, 32(11): 116301.
[13] Realization of high-fidelity and robust geometric gates with time-optimal control technique in superconducting quantum circuit
Zhimin Wang(王治旻), Zhuang Ma(马壮), Xiangmin Yu(喻祥敏), Wen Zheng(郑文), Kun Zhou(周坤), Yujia Zhang(张宇佳), Yu Zhang(张钰), Dong Lan(兰栋), Jie Zhao(赵杰), Xinsheng Tan(谭新生), Shaoxiong Li(李邵雄), and Yang Yu(于扬). Chin. Phys. B, 2023, 32(10): 100304.
[14] Nonadiabatic geometric phase in a doubly driven two-level system
Weixin Liu(刘伟新), Tao Wang(汪涛), and Weidong Li(李卫东). Chin. Phys. B, 2023, 32(5): 050311.
[15] Observation of size-dependent boundary effects in non-Hermitian electric circuits
Luhong Su(苏鹭红), Cui-Xian Guo(郭翠仙), Yongliang Wang(王永良), Li Li(李力), Xinhui Ruan(阮馨慧), Yanjing Du(杜燕京), Shu Chen(陈澍), and Dongning Zheng(郑东宁). Chin. Phys. B, 2023, 32(3): 038401.
No Suggested Reading articles found!