|
|
Topological laser on square lattice with gain-loss-induced higher-order corner modes |
Ming-Jie Liao(廖明杰), Mei-Song Wei(韦梅松), Shuailing Wang(王帅领), Jingping Xu(许静平)†, and Yaping Yang(羊亚平)‡ |
MOE Key Laboratory of Advanced Micro-Structured Materials, School of Physics Science and Engineering, Tongji University, Shanghai 200092, China |
|
|
Abstract We investigate the higher-order topological laser in the two-dimensional (2D) coupled-cavity array. By adding staggered on-site gain and loss to the 2D Hermitian array with a trivial phase, the system will emerge degenerate topological corner modes, which are protected by bulk band gap. For such a non-Hermitian model, by adjusting the parameters of the system and introducing the pumping into the cavity at the corner, a single-mode lasing with topological protection emerges. Furthermore, single-mode lasing exists over a wide range of pumping strengths. No matter where the cavity is initially stimulated, after enough time evolution, all the cavities belonging to the topological corner mode can emit a stable laser.
|
Received: 26 December 2023
Revised: 26 February 2024
Accepted manuscript online: 11 March 2024
|
PACS:
|
03.65.Vf
|
(Phases: geometric; dynamic or topological)
|
|
03.65.Vf
|
(Phases: geometric; dynamic or topological)
|
|
42.60.By
|
(Design of specific laser systems)
|
|
42.60.-v
|
(Laser optical systems: design and operation)
|
|
Fund: This work was supported by the National Natural Science Foundation of China (Grant Nos. 12274326 and 12174288) and the National Key R&D Program of China (Grant No. 2021YFA1400602). |
Corresponding Authors:
Jingping Xu, Yaping Yang
E-mail: xx_jj_pp@tongji.edu.cn;yang_yaping@tongji.edu.cn
|
Cite this article:
Ming-Jie Liao(廖明杰), Mei-Song Wei(韦梅松), Shuailing Wang(王帅领), Jingping Xu(许静平), and Yaping Yang(羊亚平) Topological laser on square lattice with gain-loss-induced higher-order corner modes 2024 Chin. Phys. B 33 060305
|
[1] Qi X L and Zhang S C 2011 Rev. Mod. Phys. 83 1057 [2] Haldane F D M and Raghu S 2008 Phys. Rev. Lett. 100 013904 [3] Raghu S and Haldane F D M 2008 Phys. Rev. A 78 033834 [4] Khanikaev A B, Mousavi S H, Tse W K, Kargarian M, MacDonald A H and Shvets G 2013 Nat. Mater. 12 233 [5] Hafezi M, Mittal S, Fan J, Migdall A and Taylor J M 2013 Nat. Photon. 7 1001 [6] Rechtsman M C, Zeuner J M, Plotnik Y, Lumer Y, Podolsky D, Dreisow F, Nolte S, Segev M and Szameit A 2013 Nature 496 196 [7] Wu L H and Hu X 2015 Phys. Rev. Lett. 114 223901 [8] Leykam D and Chong Y D 2016 Phys. Rev. Lett. 117 143901 [9] Slobozhanyuk A P, Khanikaev A B, Filonov D S, Smirnova D A, Miroshnichenko A E and Kivshar Y S 2016 Sci. Rep. 6 22270 [10] Khanikaev A B and Shvets G 2017 Nat. Photon. 11 763 [11] Ota Y, Katsumi R, Watanabe K, Iwamoto S and Arakawa Y 2018 Commun. Phys. 1 86 [12] Ota Y, Liu F, Katsumi R, Watanabe K, Wakabayashi K, Arakawa Y and Iwamoto S 2019 Optica 6 786 [13] Hassan A E, Kunst F K, Moritz A, Andler G, Bergholtz E J and Bourennane M 2019 Nat. Photon. 13 697 [14] Yoshimi H, Yamaguchi T, Ota Y, Arakawa Y and Iwamoto S 2020 Opt. Lett. 45 2648 [15] Prodan E and Prodan C 2009 Phys. Rev. Lett. 103 248101 [16] Yang Z J, Gao F, Shi X H, Lin X, Gao Z, Chong Y Y and Zhang B L 2015 Phys. Rev. Lett. 114 114301 [17] Stenull O, Kane C L and Lubensky T C 2016 Phys. Rev. Lett. 117 068001 [18] Liu Y Z, Xu Y, Zhang S C and Duan W H 2017 Phys. Rev. B 96 064106 [19] Singh S, Wu Q S, Yue C M, Romero A H and Soluyanov A A 2018 Phys. Rev. Mater. 2 114204 [20] Saha K and Garate I 2014 Phys. Rev. B 89 205103 [21] Li J X, Wang L, Liu J X, Li R H, Zhang Z Y and Chen X Q 2020 Phys. Rev. B 101 081403 [22] Ren H J, Shah T, Pfeifer H, Brendel C, Peano V, Marquardt F and Painter O 2022 Nat. Commun. 13 3476 [23] Liu Y Z, Zou N L, Zhao S B, Chen X B, Xu Y and Duan W H 2022 Nano Lett. 22 2120 [24] Yang Y, Wang J H, Liu Y, Cui Y T, Ding G Q and Wang X T 2023 Phys. Rev. B 107 024304 [25] Amigo M G, Vergniory M G, Errea I and Manes J L 2023 Phys. Rev. B 107 144307 [26] Ningyuan J, Owens C, Sommer A, Schuster D and Simon J 2015 Phys. Rev. X 5 021031 [27] Albert V V, Glazman L I and Jiang L 2015 Phys. Rev. Lett. 114 173902 [28] Hadad Y, Soric J C, Khanikaev A B and Alù A 2018 Nat. Electron. 1 178 [29] Zhao E 2018 Ann Phys. 399 289 [30] Lee C H, Imhof S, Berger C, Bayer F, Brehm J, Molenkamp L W, Kiessling T and Thomale R 2018 Commun. Phys. 1 39 [31] Imhof S, Berger C, Bayer F, Brehm J, Molenkamp L W, Kiessling T, Schindler F, Lee C H, Greiter M, Neupert T and Thomale R 2018 Nat. Phys. 14 925 [32] Liu S, Ma S J, Zhang Q, Zhang L, Yang C H, You O, Gao W L, Xiang J Y, Cui T J and Zhang S 2020 Light Sci. Appl. 9 145 [33] Wang Y, Price H M, Zhang B L and Chong Y D 2020 Nat. Commun. 22 2356 [34] Olekhno N A, Kretov E I, Stepanenko A A, Ivanova P A, Yaroshenko V V, Puhtina E M, Filonov D S, Cappello B, Matekovits L and Gorlach M A 2022 Nat. Commun. 11 1436 [35] Zou D Y, Chen T, He W J, Bao J C, Lee CH H, Sun H J and Zhang X D 2021 Nat. Commun. 12 7201 [36] Shi A Q, Peng Y W, Jiang J P, Peng Y C, Peng P, Chen J Z, Chen H S, Wen S C, Lin X, Gao F and Liu J J 2024 Laser Photon. Rev. 2024 2300956 [37] Liu X Y, Lin Z Y, Song W E, Sun J C, Huang C Y, Wu S J, Xiao X J, Xin H R, Zhu S N and Li T 2024 Phys. Rev. Lett. 132 016601 [38] On M B, Ashtiani F, Sanchez-Jacome D, Perez-Lopez D, Yoo S J B and Blanco-Redondo A 2024 Nat. Commun. 15 629 [39] Xu Q X, Peng Y C, Shi A Q, Peng P and Liu J J 2024 J. Opt. Soc. Am. A 41 366 [40] Khanikaev A B and Alù A 2024 Nat. Commun. 15 931 [41] Fritzsche A, Biesenthal T, Maczewsky L J, Becker K, Ehrhardt M, Heinrich M, Thomale R, Joglekar Y N and Szameit A 2024 Nat. Mater. 23 377 [42] Guo H M and Franz M 2009 Phys. Rev. B 80 113102 [43] Xue H Y, Yang Y H, Gao F, Chong Y D and Zhang B L 2019 Nat. Mater. 18 108 [44] Lu X C, Chen Y and Chen H Y 2020 Phys. Rev. B 101 195143 [45] Shen K, Deng W M, Mo H C, Shi F L, Ma F, Chen X D and Dong J W 2023 Opt. Lett. 48 2825 [46] Ma H Y, Zhang Z, Fu P H, Wu J S and Yu X L 2022 Phys. Rev. B 106 245109 [47] Li C A, Choi S J, Zhang S B and Trauzettel B 2022 Phys. Rev. Res. 4 023193 [48] Li S, Yan X X, Gao J H and Hu Y 2022 Opt. Express 30 17054 [49] Zhang W H, Xie X, Hao H M, Dang J C, Xiao S, Shi S S, Ni H Q, Niu Z C, Wang C, Jin K J, Zhang X D, and Xu X L 2020 Light Sci. Appl. 9 109 [50] Wei M S, Liao M J, Wang C, Zhu C J, Yang Y P and Xu J P 2023 Opt. Express 31 3427 [51] Bahari B, Ndao A, Vallini F, Amili A E, Fainman Y and Kanté B 2017 Science 358 636 [52] Harari G, Bandres M A, Lumer Y, Rechtsman M C, Chong Y D, Khajavikhan M, Christodoulides D N and Segev M 2018 Science 359 eaar4003 [53] Bandres M A, Wittek S, Harari G, Parto M, Ren J H, Segev M, Christodoulides D N and Khajavikhan M 2018 Science 359 eaar4005 [54] Zeng Y Q, Chattopadhyay U, Zhu B F, Qiang B, Li J H, Jin Y H, Li L H, Davies A G, Linfield E H, Zhang B L, Chong Y D and Wang Q J 2020 Nature 578 246 [55] Amelio I and Carusotto I 2020 Phys. Rev. X 10 041060 [56] Shao Z K, Chen H Z, Wang S, Mao X R, Yang Z Q, Wang S L, Wang X X, Hu X and Ma R M 2020 Nat. Nanotechnol. 15 67 [57] Pelous A L, Amelio I, Seclĺ M and Carusotto I 2021 Phys. Rev. A 104 053516 [58] Zhong H, Kartashov Y V, Szameit A, Li Y D, Liu C L and Zhang Y Q 2021 APL Photon. 6 040802 [59] Ezawa M 2022 Phys. Rev. Res. 4 013195 [60] Gong Y K, Wong S, Bennett A J, Huffaker D L and Oh S S 2022 ACS Photon. 7 2089 [61] Tian J Y, Tan Q Y, Wang Y T, Yang Y H, Yuan G H, Adamo G and Soci C 2023 Nat. Commun. 14 1433 [62] Wu J Q, Ghosh S J, Gan Y S, Shi Y, Mandal S, Sun H D, Zhang B L, Liew T C H, Su R and Xiong Q H 2023 Sci. Adv. 9 eadg4322 [63] Han S, Cui J Y, Chua Y D, Zeng Y Q, Hu L X, Dai M J, Wang F K, Sun F Y, Zhu S, Li L H, Davies A G, Linfield E H, Tan C S, Kivshar Y and Wang Q J 2023 Light Sci. Appl. 12 145 [64] Longhi S, Gatti D and Valle G D 2015 Sci. Rep. 5 13376 [65] Mittal S, Orre V V, Zhu G Y, Gorlach M A, Poddubny A and Hafezi M 2019 Nat. Photon. 13 692 [66] Wheeler W A, Wagner L K and Hughes T L 2019 Phys. Rev. B 100 245135 [67] Luo X W and Zhang C W 2019 Phys. Rev. Lett. 123 073601 [68] Wei Y Z, Yan B, Peng Y C, Shi A Q, Zhao D Y, Peng R, Xiang Y J and Liu J J 2021 Opt. Lett. 46 3941 [69] Zhu B F, Wang Q, Zeng Y Q, Wang Q J and Chong Y D 2021 Phys. Rev. B 104 L140306 [70] Benalcazar W A, Bernevig B A and Hughes T L 2017 Phys. Rev. B 96 245115 [71] Zhu B F, Wang Q, Leykam D L, Xue H R, Wang Q J and Chong Y D 2022 Phys. Rev. Lett 129 013903 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|