Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(2): 024212    DOI: 10.1088/1674-1056/aca9c5
RAPID COMMUNICATION Prev   Next  

Estimation of far-field wavefront error of tilt-to-length distortion coupling in space-based gravitational wave detection

Ya-Zheng Tao(陶雅正)1, Hong-Bo Jin(金洪波)2,3,5,†, and Yue-Liang Wu(吴岳良)3,4,5
1 The School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China;
2 National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100101, China;
3 The International Centre for Theoretical Physics Asia-Pacific, University of Chinese Academy of Sciences, Beijing 100190, China;
4 CAS Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190, China;
5 Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
Abstract  In space-based gravitational wave detection, the estimation of far-field wavefront error of the distorted beam is the precondition for the noise reduction. Zernike polynomials are used to describe the wavefront error of the transmitted distorted beam. The propagation of a laser beam between two telescope apertures is calculated numerically. Far-field wavefront error is estimated with the absolute height of the peak-to-valley phase deviation between the distorted Gaussian beam and a reference distortion-free Gaussian beam. The results show that the pointing jitter is strongly related to the wavefront error. Furthermore, when the jitter decreases 10 times from 100 nrad to 10 nrad, the wavefront error reduces for more than an order of magnitude. In the analysis of multi-parameter minimization, the minimum of wavefront error tends to $Z$[5,3] Zernike in some parameter ranges. Some Zernikes have a strong correlation with the wavefront error of the received beam. When the aperture diameter increases at $Z$[5,3] Zernike, the wavefront error is not monotonic and has oscillation. Nevertheless, the wavefront error almost remains constant with the arm length increasing from 10$^{-1}$ Mkm to 10$^3$ Mkm. When the arm length decreases for three orders of magnitude from 10$^{-1}$ Mkm to 10$^{-4}$ Mkm, the wavefront error has only an order of magnitude increasing. In the range of 10$^{-4}$ Mkm to 10$^3$ Mkm, the lowest limit of the wavefront error is from 0.5 fm to 0.015 fm at $Z$[5,3] Zernike and 10 nrad jitter.
Keywords:  laser optical systems      space mission      gravitational wave  
Received:  24 November 2022      Revised:  30 November 2022      Accepted manuscript online:  08 December 2022
PACS:  42.60.-v (Laser optical systems: design and operation)  
  07.87.+v (Spaceborne and space research instruments, apparatus, and components (satellites, space vehicles, etc.))  
  04.80.Nn (Gravitational wave detectors and experiments)  
Corresponding Authors:  Hong-Bo Jin     E-mail:  hbjin@bao.ac.cn

Cite this article: 

Ya-Zheng Tao(陶雅正), Hong-Bo Jin(金洪波), and Yue-Liang Wu(吴岳良) Estimation of far-field wavefront error of tilt-to-length distortion coupling in space-based gravitational wave detection 2023 Chin. Phys. B 32 024212

[1] The LIGO Scientific Collaboration, the Virgo Collaboration and the KAGRA Collaboration 2021 (Preprint 2111.03606)
[2] Ruan W H, Liu C, Guo Z K, Wu Y L and Cai R G 2020 Nature Astronomy 4 108
[3] Jennrich O 2009 Classical and Quantum Gravity 26 153001
[4] Amaro-Seoane P, Audley H, Babak S, et al. 2017 (Preprint 1702.00786)
[5] Schuster S, Wanner G, Tröbs M and Heinzel G 2015 Applied Optics 54 1010
[6] Robertson D, McNamara P, Ward H and Hough J 1997 Classical and Quantum Gravity 14 1575
[7] Sasso C P, Mana G and Mottini S 2018 Classical and Quantum Gravity 35 185013
[8] Thorpe J I 2010 Classical and Quantum Gravity 27 084008
[9] Mueller G 2005 Opt. Express 13 7118 12
[10] Zhao Y, Shen J, Fang C, Liu H, Wang Z and Luo Z 2020 Opt. Express 28 25545
[11] Weaver A J, Mueller G and Fulda P J 2022 Classical and Quantum Gravity 39 195016
[12] Kenny F and Devaney N 2021 Classical and Quantum Gravity 38 035010
[13] Sasso C P, Mana G and Mottini S 2019 Opt. Express 27 16855
[14] Nijboer B R A 1947 Physica 13 605
[15] Greynolds A W 1986 Propagation of generally astigmatic gaussian beams along skew ray paths Diffraction Phenomena in Optical Engineering Applications vol. 560 (SPIE) pp. 33-51
[16] Wanner G, Heinzel G, Kochkina E, Mahrdt C, Sheard B S, Schuster S and Danzmann K 2012 Opt. Commun. 285 4831
[17] Saleh B E A and Teich M C 1991 Beam Optics (New York: John Wiley & Sons, Inc.) chap 3, pp. 80-107
[18] Noll R J 1976 J. Opt. Soc. Am. 66 207
[19] Prince T A, Tinto M, Larson S L and Armstrong J W 2002 Phys. Rev. D 66 122002
[20] Worku N G, Hambach R and Gross H 2018 JOSA A 35 1091
[1] Simulation of the gravitational wave frequency distribution of neutron star-black hole mergers
Jianwei Zhang(张见微), Chengmin Zhang(张承民), Di Li(李菂), Xianghan Cui(崔翔翰), Wuming Yang(杨伍明), Dehua Wang(王德华), Yiyan Yang(杨佚沿), Shaolan Bi(毕少兰), and Xianfei Zhang(张先飞). Chin. Phys. B, 2021, 30(12): 120401.
[2] Orbit optimization and time delay interferometry for inclined ASTROD-GW formation with half-year precession-period
Wang Gang (王刚), Ni Wei-Tou (倪维斗). Chin. Phys. B, 2015, 24(5): 059501.
[3] Orbit optimization for ASTROD-GW and its time delay interferometry with two arms using CGC ephemeris
Wang Gang (王刚), Ni Wei-Tou (倪维斗). Chin. Phys. B, 2013, 22(4): 049501.
[4] High-frequency gravitational waves having large spectral densities and their electromagnetic response
Li Fang-Yu (李芳昱), Wen Hao (文毫), Fang Zhen-Yun (方祯云). Chin. Phys. B, 2013, 22(12): 120402.
[5] Gravitational waves from the axial perturbations of hyperon stars
Wen De-Hua(文德华), Yan Jing(燕晶), and Liu Xue-Mei(刘雪梅) . Chin. Phys. B, 2012, 21(6): 060402.
[6] Impact of neutron star crust on gravitational waves from the axial  w-modes
Wen De-Hua(文德华), Fu Hong-Yang(付宏洋), and Chen Wei(陈伟). Chin. Phys. B, 2011, 20(6): 060402.
[7] Determining the long living quasi-normal modes of relativistic stars
Lü Jun-Li(吕君丽) and Suen Wai-Mo(孙纬武) . Chin. Phys. B, 2011, 20(4): 040401.
[8] Noise in a coupling electromagnetic detecting system for high frequency gravitational waves
Li Jin(李瑾), Li Fang-Yu(李芳昱), and Zhong Yuan-Hong(仲元红). Chin. Phys. B, 2009, 18(3): 922-926.
[9] Improved calculation of relic gravitational waves
Zhao Wen(赵文). Chin. Phys. B, 2007, 16(10): 2894-2902.
[10] A special form of electrodynamical response to a gravitational wave: outgoing and imploding photon fluxes
Li Fang-Yu (李芳昱), Su Xun (苏荀), Long Bing-Wei (龙炳蔚), Tang Meng-Xi (唐孟希). Chin. Phys. B, 2002, 11(5): 461-466.
No Suggested Reading articles found!