CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES |
Prev
Next
|
|
|
Pressure-induced magnetic phase and structural transition in SmSb2 |
Tao Li(李涛)1,2, Shuyang Wang(王舒阳)2,†, Xuliang Chen(陈绪亮)1,2, Chunhua Chen(陈春华)2, Yong Fang(房勇)3, and Zhaorong Yang(杨昭荣)1,2,4,5,‡ |
1 Science Island Branch of Graduate School, University of Science and Technology of China, Hefei 230026, China; 2 Anhui Key Laboratory of Low-Energy Quantum Materials and Devices, High Magnetic Field Laboratory, HFIPS, Chinese Academy of Sciences, Hefei 230031, China; 3 Jiangsu Laboratory of Advanced Functional Materials, Department of Physics, Changshu Institute of Technology, Changshu 215500, China; 4 Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China; 5 Collaborative Innovation Center of Advanced Microstructures, Nanjing 210093, China |
|
|
Abstract Motivated by the recent discovery of unconventional superconductivity around a magnetic quantum critical point in pressurized CeSb$_{2}$, here we present a high-pressure study of an isostructural antiferromagnetic (AFM) SmSb$_{2}$ through electrical transport and synchrotron x-ray diffraction measurements. At $P_{\rm C} \sim 2.5 $GPa, we found a pressure-induced magnetic phase transition accompanied by a Cmca, $\to P$4nmm structural phase transition. In the pristine AFM phase below $P_{\rm C}$, the AFM transition temperature of SmSb$_{2}$ is insensitive to pressure; in the emergent magnetic phase above $P_{\rm C}$, however, the magnetic critical temperature increases rapidly with increasing pressure. In addition, at ambient pressure, the magnetoresistivity (MR) of SmSb$_{2}$ increases suddenly upon cooling below the AFM transition temperature and presents linear nonsaturating behavior under high field at 2K. With increasing pressure above $P_{\rm C}$, the MR behavior remains similar to that observed at ambient pressure, both in terms of temperature- and field-dependent MR. This leads us to argue an AFM-like state for SmSb$_{2}$ above $P_{\rm C}$. Within the investigated pressure of up to 45.3GPa and the temperature of down to 1.8K, we found no signature of superconductivity in SmSb$_{2}$.
|
Received: 06 February 2024
Revised: 19 March 2024
Accepted manuscript online: 21 March 2024
|
PACS:
|
64.70.K
|
(Solid-solid transitions)
|
|
47.80.Fg
|
(Pressure and temperature measurements)
|
|
61.50.Ks
|
(Crystallographic aspects of phase transformations; pressure effects)
|
|
81.40.Vw
|
(Pressure treatment)
|
|
Fund: Project supported by the National Key Research and Development Program of China (Grant Nos. 2023YFA1406102 and 2022YFA1602603), the National Natural Science Foundation of China (Grant Nos. 12374049 and 12174395), the China Postdoctoral Science Foundation (Grant No. 2023M743542), Hefei Institutes of Physical Science, Chinese Academy of Sciences the Director’s Fundation of (Grant No. YZJJ2024QN41), and the Basic Research Program of the Chinese Academy of Sciences Based on Major Scientific Infrastructures (Grant No. JZHKYPT-2021-08). |
Corresponding Authors:
Shuyang Wang, Zhaorong Yang
E-mail: sywang@hmfl.ac.cn;zryang@issp.ac.cn
|
Cite this article:
Tao Li(李涛), Shuyang Wang(王舒阳), Xuliang Chen(陈绪亮), Chunhua Chen(陈春华), Yong Fang(房勇), and Zhaorong Yang(杨昭荣) Pressure-induced magnetic phase and structural transition in SmSb2 2024 Chin. Phys. B 33 066401
|
[1] Steglich F and Wirth S 2016 Rep. Prog. Phys. 79 084502 [2] Scalapino D J 2012 Rev. Mod. Phys. 84 1383 [3] Morosan E, Natelson D, Nevidomskyy A H and Si Q M 2012 Adv. Mater. 24 4896 [4] Gegenwart P, Si Q and Steglich F 2008 Nat. Phys. 4 186 [5] Stewart S G 1984 Rev. Mod. Phys. 56 755 [6] Niu R and Zhu W 2021 J. Phys.: Condens. Matter 34 113001 [7] Yin J X, Ma W, Cochran T A, Xu X, Zhang S S, Tien H J, Shumiya N, Cheng G, Jiang K and Lian B 2020 Nature 583 533 [8] Tafti F, Gibson Q, Kushwaha S, Haldolaarachchige N and Cava R 2016 Nat. Phys. 12 272 [9] Dzero M, Xia J, Galitski V and Coleman P 2016 Annu. Rev. Condens. Matter Phys. 7 249 [10] Weng H, Yu R, Hu X, Dai X and Fang Z 2015 Adv. Phys. 64 227 [11] Tokura Y, Yasuda K and Tsukazaki A 2019 Nat. Rev. Phys. 1 126 [12] Tang F, Po H C, Vishwanath A and Wan X 2019 Nature 566 486 [13] Šmejkal L, Mokrousov Y, Yan B and MacDonald A H 2018 Nat. Phys. 14 242 [14] Bansil A, Lin H and Das T 2016 Rev. Mod. Phys. 88 021004 [15] Luccas R F, Fente A, Hanko J, Correa-Orellana A, Herrera E, ClimentPascual E, Azpeitia J, Perez-Castañeda T, Osorio M and Salas-Colera E 2015 Phys. Rev. B 92 235153 [16] Kagawa A, Kagayama T, Oomi G, Mitamura H, Goto T, Canfield P and Bud’ko S 2000 Physica B: Condens. Matter 281 124 [17] Kawaguchi K, Kagayama T, Oomi G, Canfield P and Bud’Ko S 1997 Physica B 237 587 [18] Palacio I, Obando-Guevara J, Chen L, Nair M, Barrio M G, Papalazarou E, Le Fèvre P, Taleb-Ibrahimi A, Michel E and Mascaraque A 2023 Appl. Surf. Sci. 610 155477 [19] Bud’ko S L, Canfield P, Mielke C and Lacerda A 1998 Phys. Rev. B 57 13624 [20] Fischer K F, Roth N and Iversen B B 2019 J. Appl. Phys. 125 045110 [21] Galvis J, Suderow H, Vieira S, Bud’ko S and Canfield P 2013 Phys. Rev. B 87 214504 [22] Guo S, Young D, Adams P, Wu X, Chan J Y, McCandless G and DiTusa J 2011 Phys. Rev. B 83 174520 [23] Singha R, Yuan F, Lee S B, Villalpando G V, Cheng G, Singh B, Sarker S, Yao N, Burch K S and Schoop L M 2023 Adv. Funct. Mater 23 2308733 [24] Trainer C, Abel C, Bud’ko S L, Canfield P C and Wahl P 2021 Phys. Rev. B 104 205134 [25] Liu B, Wang L, Radelytskyi I, Zhang Y, Meven M, Deng H, Zhu F, Su Y, Zhu X and Tan S 2020 J. Phys.: Condens. Matter 32 405605 [26] Zhang Y, Zhu X, Hu B, Tan S, Xie D, Feng W, Qin L, Zhang W, Liu Y, Song H, Luo L, Zhang Z and Lai X 2017 Chin. Phys. B 26 067102 [27] Ruszała P, Winiarski M and Samsel-Czekała M 2020 Acta Phys. Pol. A 138 748 [28] Young D, Goodrich R, DiTusa J, Guo S, Adams P, Chan J Y and Hall D 2003 Appl. Phys. Lett. 82 3713 [29] Goodrich R, Browne D, Kurtz R, Young D, DiTusa J, Adams P and Hall D 2004 Phys. Rev. B 69 125114 [30] Qiao Y, Tao Z, Wang F, Wang H, Jiang Z, Liu Z, Cho S, Zhang F, Meng Q and Xia W 2022 arXiv:2208.10437 [cond-mat.str-el] [31] Bud’ko S L, Huyan S, Herrera-Siklody P and Canfield P C 2023 Philos. Mag. 103 561 [32] Weinberger T I, de Podesta C K, Chen J, Hodgson S A and Grosche F M 2023 SciPost Phys. 11 018 [33] Squire O P, Hodgson S A, Chen J, Fedoseev V, de Podesta C K, Weinberger T I, Alireza P L and Grosche F M 2023 Phys. Rev. Lett. 131 026001 [34] Canfield P C, Thompson J D and Fisk Z 1991 J. Appl. Phys. 70 5992 [35] Zhou Y, Chen X, An C, Zhou Y, Ling L, Yang J, Chen C, Zhang L, Tian M, Zhang Z and Yang Z 2019 Phys. Rev. B 99 054501 [36] Mao H, Xu J A and Bell P 1986 J. Geophys. Res. Solid Earth 91 4673 [37] Prescher C and Prakapenka V B 2015 High. Press. Res. 35 223 [38] Hunter B 1998 Newsletter 20 [39] Zhou Y, Chen X, Zhou Y, Yu J, Zhu X, An C, Park C, Wan X, Yang X and Yang Z 2022 Sci. China. Phys. Mech. 65 288211 [40] Geishendorf K, Schlitz R, Vir P, Shekhar C, Felser C, Nielsch K, Goennenwein S T and Thomas A 2019 Appl. Phys. Lett. 114 092403 [41] Chandra Shekar N V, Sahu P C, Sanjay Kumar N R, Sekar M, Subramanian N, Kathirvel V, Chandra S and Rajagopalan M 2009 Solid State Phenom. 150 123 [42] Birch F 1947 Phys. Rev. 71 809 [43] Yang Y F, Fisk Z, Lee H O, Thompson J and Pines D 2008 Nature 454 611 [44] Iglesias J R, Lacroix C and Coqblin B 1997 Phys. Rev. B 56 11820 [45] Doniach S 1977 Physica B 91 231 [46] Song J, Bi W, Haskel D and Schilling J 2017 Phys. Rev. B 95 205138 [47] Matsubayashi K, Tanaka T, Sakai A, Nakatsuji S, Kubo Y and Uwatoko Y 2012 Phys. Rev. Lett. 109 187004 [48] Hegger H, Petrovic C, Moshopoulou E, Hundley M, Sarrao J, Fisk Z and Thompson J 2000 Phys. Rev. Lett. 84 4986 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|