Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(6): 066101    DOI: 10.1088/1674-1056/ad2d53
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Wafer-scale 30° twisted bilayer graphene epitaxially grown on Cu0.75Ni0.25 (111)

Peng-Cheng Ma(马鹏程)1,2,†, Ao Zhang(张翱)3,4,†, Hong-Run Zhen(甄洪润)1,2, Zhi-Cheng Jiang(江志诚)3,4, Yi-Chen Yang(杨逸尘)3,4, Jian-Yang Ding(丁建阳)3,4, Zheng-Tai Liu(刘正太)3,4, Ji-Shan Liu(刘吉山)3,4, Da-Wei Shen(沈大伟)5, Qing-Kai Yu(于庆凯)3,4, Feng Liu(刘丰)1,2,‡, Xue-Fu Zhang(张学富)3,4,§, and Zhong-Hao Liu(刘中灏)1,2,¶
1 School of Physical Science and Technology, Ningbo University, Ningbo 315211, China;
2 Institute of High-Pressure Physics, Ningbo University, Ningbo 315211, China;
3 National Key Laboratory of Materials for Integrated Circuits, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China;
4 Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China;
5 National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, China
Abstract  Twisted bilayer graphene (TBG) has been extensively studied because of its novel physical properties and potential application in electronic devices. Here we report the synthesis and characterization of 30$^\circ$ TBG naturally grown on Cu$_{0.75}$Ni$_{0.25}$ (111) film and investigate the electronic structure by angle-resolved photoemission spectroscopy. Compared with other substrates, our TBG with a wafer scale is acquired with a shorter growth time. The Fermi velocity and energy gap of Dirac cones of TBG are comparable with those of a monolayer on Cu$_{0.85}$Ni$_{0.15}$ (111). The signature of moiré lattices has not been observed in either the low-energy electron diffraction patterns or the Fermi surface map within experimental resolution, possibly due to different Cu and Ni contents in the substrates enhancing the different couplings between the substrate and the first/second layers and hindering the formation of a quasiperiodic structure.
Keywords:  twisted bilayer graphene      electronic structure      Cu/Ni(111)  
Received:  28 November 2023      Revised:  03 February 2024      Accepted manuscript online:  26 February 2024
PACS:  61.48.Gh (Structure of graphene)  
  68.65.Pq (Graphene films)  
  71.28.+d (Narrow-band systems; intermediate-valence solids)  
  81.05.ue (Graphene)  
Fund: Project supported by the National Key R&D Program of China (Grant Nos. 2022YFB3608000 and 2022YFA1204900), the National Natural Science Foundation of China (Grant Nos. 12222413 and 12074205), the Natural Science Foundation of Shanghai (Grant Nos. 23ZR1482200 and 22ZR1473300), the Natural Science Foundation of Zhejiang Province (Grant No. LQ21A040004), and the funding of Ningbo University (Grant No. LJ2024003).
Corresponding Authors:  Feng Liu, Xue-Fu Zhang, Zhong-Hao Liu     E-mail:  liufeng@nbu.edu.cn;zhangxuefu@mail.sim.ac.cn;liuzhonghao@nbu.edu.cn

Cite this article: 

Peng-Cheng Ma(马鹏程), Ao Zhang(张翱), Hong-Run Zhen(甄洪润), Zhi-Cheng Jiang(江志诚), Yi-Chen Yang(杨逸尘), Jian-Yang Ding(丁建阳), Zheng-Tai Liu(刘正太), Ji-Shan Liu(刘吉山), Da-Wei Shen(沈大伟), Qing-Kai Yu(于庆凯), Feng Liu(刘丰), Xue-Fu Zhang(张学富), and Zhong-Hao Liu(刘中灏) Wafer-scale 30° twisted bilayer graphene epitaxially grown on Cu0.75Ni0.25 (111) 2024 Chin. Phys. B 33 066101

[1] Li G, Luican A, Lopes Dos Santos J M B, Castro Neto A H, Reina A, Kong J and Andrei E Y 2010 Nat. Phys. 6 109
[2] Luican A, Li G, Reina A, Kong J, Nair R R, Novoselov K S, Geim A K and Andrei E Y 2011 Phys. Rev. Lett. 106 126802
[3] Wong D, Wang Y, Jung J, Pezzini S, DaSilva A M, Tsai H Z, Jung H S, Khajeh R, Kim Y, Lee J, Kahn S, Tollabimazraehno S, Rasool H, Watanabe K, Taniguchi T, Zettl A, Adam S, MacDonald A H and Crommie M F 2015 Phys. Rev. B 92 155409
[4] Sanchez-Yamagishi J D, Taychatanapat T, Watanabe K, Taniguchi T, Yacoby A and Jarillo-Herrero P 2012 Phys. Rev. Lett. 108 076601
[5] Sanchez-Yamagishi J D, Luo J Y, Young A F, Hunt B M, Watanabe K, Taniguchi T, Ashoori R C and Jarillo-Herrero P 2017 Nat. Nanotech. 12 118
[6] Cao Y, Fatemi V, Fang S, Watanabe K, Taniguchi T, Kaxiras E and Jarillo-Herrero P 2018 Nature 556 43
[7] Cao Y, Fatemi V, Demir A, Fang S, Tomarken S L, Luo J Y, SanchezYamagishi J D, Watanabe K, Taniguchi T, Kaxiras E, Ashoori R C and Jarillo-Herrero P 2018 Nature 556 80
[8] Huang M, Wu Z, Zhang X, Feng X, Zhou Z, Wang S, Chen Y, Cheng C, Sun K, Meng Z Y and Wang N 2023 Phys. Rev. Lett. 131 066301
[9] Ahn S J, Moon P, Kim T H, Kim H W, Shin H C, Kim E H, Cha H W, Kahng S J, Kim P, Koshino M, Son Y W, Yang C W and Ahn J R 2018 Science 361 782
[10] Yao W, Wang E, Bao C, Zhang Y, Zhang K, Bao K, Chan C K, Chen C, Avila J, Asensio M C, Zhu J and Zhou S 2018 Proc. Natl. Acad. Sci. USA 115 6928
[11] Zhai D, Chen C, Xiao C and Yao W 2023 Nat. Commun. 14 1961
[12] Chen C, Zhai D, Xiao C and Yao W 2023 arXiv:2303.09973
[13] Yan Z, Liu Y, Ju L, Peng Z, Lin J, Wang G, Zhou H, Xiang C, Samuel E L G, Kittrell C, Artyukhov V I, Wang F, Yakobson B I and Tour J M 2014 Angew. Chem. Int. Ed. 53 1565
[14] Zhang X, Wu T, Jiang Q, Wang H, Zhu H, Chen Z, Jiang R, Niu T, Li Z, Zhang Y, Qiu Z, Yu G, Li A, Qiao S, Wang H, Yu Q and Xie X 2019 Small 15 1805395
[15] Zhang X F, Liu Z H, Liu W L, Lu X L, Li Z J, Yu Q K, Shen D W and Xie X M 2019 Chin. Phys. B 28 086103
[16] Yu G, Wu Z, Zhan Z, Katsnelson M I and Yuan S 2019 npj Comput. Mater. 5 122
[17] Khomyakov P A, Giovannetti G, Rusu P C, Brocks G, Van Den Brink J and Kelly P J 2009 Phys. Rev. B 79 195425
[1] Electronic structure and effective mass of pristine and Cl-doped CsPbBr3
Zhiyuan Wei(魏志远), Yu-Hao Wei(魏愉昊), Shendong Xu(徐申东), Shuting Peng(彭舒婷), Makoto Hashimoto, Donghui Lu(路东辉), Xu Pan(潘旭), Min-Quan Kuang(匡泯泉), Zhengguo Xiao(肖正国), and Junfeng He(何俊峰). Chin. Phys. B, 2024, 33(5): 057403.
[2] Optical manipulation of the topological phase in ZrTe5 revealed by time- and angle-resolved photoemission
Chaozhi Huang(黄超之), Chengyang Xu(徐骋洋), Fengfeng Zhu(朱锋锋), Shaofeng Duan(段绍峰), Jianzhe Liu(刘见喆), Lingxiao Gu(顾凌霄), Shichong Wang(王石崇), Haoran Liu(刘浩然), Dong Qian(钱冬), Weidong Luo(罗卫东), and Wentao Zhang(张文涛). Chin. Phys. B, 2024, 33(1): 017901.
[3] Valley-dependent transport in a mescoscopic twisted bilayer graphene device
Wen-Xuan Shi(史文萱), Han-Lin Liu(刘翰林), and Jun Wang(汪军). Chin. Phys. B, 2024, 33(1): 017205.
[4] Geometries and electronic structures of ZrnCu(n =2-12) clusters: A joint machine-learning potential density functional theory investigation
Yizhi Wang(王一志), Xiuhua Cui(崔秀花), Jing Liu(刘静), Qun Jing(井群), Haiming Duan(段海明), and Haibin Cao(曹海宾). Chin. Phys. B, 2024, 33(1): 016109.
[5] Electronic structure study of the charge-density-wave Kondo lattice CeTe3
Bo Wang(王博), Rui Zhou(周锐), Xuebing Luo(罗学兵), Yun Zhang(张云), and Qiuyun Chen(陈秋云). Chin. Phys. B, 2023, 32(9): 097103.
[6] Pressure-induced phase transition and electronic structure evolution in layered semimetal HfTe2
Mei-Guang Zhang(张美光), Lei Chen(陈磊), Long Feng(冯龙), Huan-Huan Tuo(拓换换), Yun Zhang(张云), Qun Wei(魏群), and Pei-Fang Li(李培芳). Chin. Phys. B, 2023, 32(8): 086101.
[7] Critical behavior in the epitaxial growth of two-dimensional tellurium films on SrTiO3 (001) substrates
Haimin Zhang(张海民), Dezhi Song(宋德志), Fuyang Huang(黄扶旸), Jun Zhang(仉君), and Ye-Ping Jiang(蒋烨平). Chin. Phys. B, 2023, 32(6): 066802.
[8] Flat band in hole-doped transition metal dichalcogenide observed by angle-resolved photoemission spectroscopy
Zilu Wang(王子禄), Haoyu Dong(董皓宇), Weichang Zhou(周伟昌), Zhihai Cheng(程志海), and Shancai Wang(王善才). Chin. Phys. B, 2023, 32(6): 067103.
[9] Two-dimensional CrP2 with high specific capacity and fast charge rate for lithium-ion battery
Xiaoyun Wang(王晓允), Tao Jing(荆涛), and Dongmei Liang(梁冬梅). Chin. Phys. B, 2023, 32(6): 067102.
[10] Machine learning of the Γ-point gap and flat bands of twisted bilayer graphene at arbitrary angles
Xiaoyi Ma(马宵怡), Yufeng Luo(罗宇峰), Mengke Li(李梦可), Wenyan Jiao(焦文艳), Hongmei Yuan(袁红梅), Huijun Liu(刘惠军), and Ying Fang(方颖). Chin. Phys. B, 2023, 32(5): 057306.
[11] Prediction of LiCrTe2 monolayer as a half-metallic ferromagnet with a high Curie temperature
Li-Man Xiao(肖丽蔓), Huan-Cheng Yang(杨焕成), and Zhong-Yi Lu(卢仲毅). Chin. Phys. B, 2023, 32(5): 057505.
[12] Predicting novel atomic structure of the lowest-energy FenP13-n (n=0-13) clusters: A new parameter for characterizing chemical stability
Yuanqi Jiang(蒋元祺) and Ping Peng(彭平). Chin. Phys. B, 2023, 32(4): 047102.
[13] High-temperature ferromagnetism and strong π-conjugation feature in two-dimensional manganese tetranitride
Ming Yan(闫明), Zhi-Yuan Xie(谢志远), and Miao Gao(高淼). Chin. Phys. B, 2023, 32(3): 037104.
[14] Intrinsic electronic structure and nodeless superconducting gap of YBa2Cu3O7-δ observed by spatially-resolved laser-based angle resolved photoemission spectroscopy
Shuaishuai Li(李帅帅), Taimin Miao(苗泰民), Chaohui Yin(殷超辉), Yinghao Li(李颖昊), Hongtao Yan(闫宏涛), Yiwen Chen(陈逸雯), Bo Liang(梁波), Hao Chen(陈浩), Wenpei Zhu(朱文培), Shenjin Zhang(张申金), Zhimin Wang(王志敏), Fengfeng Zhang(张丰丰), Feng Yang(杨峰), Qinjun Peng(彭钦军), Chengtian Lin(林成天), Hanqing Mao(毛寒青), Guodong Liu(刘国东), Zuyan Xu(许祖彦), Lin Zhao(赵林), and X J Zhou(周兴江). Chin. Phys. B, 2023, 32(11): 117401.
[15] Bandgap evolution of Mg3N2 under pressure: Experimental and theoretical studies
Gang Wu(吴刚), Lu Wang(王璐), Kuo Bao(包括), Xianli Li(李贤丽), Sheng Wang(王升), and Chunhong Xu(徐春红). Chin. Phys. B, 2022, 31(6): 066205.
No Suggested Reading articles found!