Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(6): 060401    DOI: 10.1088/1674-1056/ad3342
GENERAL Prev   Next  

Triple points and phase transitions of D-dimensional dyonic AdS black holes with quasitopological electromagnetism in Einstein-Gauss-Bonnet gravity

Ping-Hui Mou(牟平辉)1, Qing-Quan Jiang(蒋青权)1,†, Ke-Jian He(何柯腱)2, and Guo-Ping Li(李国平)1,‡
1 School of Physics and Astronomy, China West Normal University, Nanchong 637000, China;
2 College of Physics, Chongqing University, Chongqing 401331, China
Abstract  By considering the negative cosmological constant $\varLambda$ as a thermodynamic pressure, we study the thermodynamics and phase transitions of the $D$-dimensional dyonic AdS black holes (BHs) with quasitopological electromagnetism in Einstein-Gauss-Bonnet (EGB) gravity. The results indicate that the small/large BH phase transition that is similar to the van der Waals (vdW) liquid/gas phase transition always exists for any spacetime dimensions. Interestingly, we then find that this BH system exhibits a more complex phase structure in 6-dimensional case that is missed in other dimensions. Specifically, it shows for $D=6$ that we observed the small/intermediate/large BH phase transitions in a specific parameter region with the triple point naturally appeared. Moreover, when the magnetic charge turned off, we still observed the small/intermediate/large BH phase transitions and triple point only in 6-dimensional spacetime, which is consistent with the previous results. However, for the dyonic AdS BHs with quasitopological electromagnetism in Einstein-Born-Infeld (EBI) gravity, the novel phase structure composed of two separate coexistence curves observed by Li et al. [ Phys. Rev. D 105 104048 (2022)] disappeared in EGB gravity. This implies that this novel phase structure is closely related to gravity theories, and seems to have nothing to do with the effect of quasitopological electromagnetism. In addition, it is also true that the critical exponents calculated near the critical points possess identical values as mean field theory. Finally, we conclude that these findings shall provide some deep insights into the intriguing thermodynamic properties of the dyonic AdS BHs with quasitopological electromagnetism in EGB gravity.
Keywords:  AdS black hole      phase transition      triple point  
Received:  14 December 2023      Revised:  24 January 2024      Accepted manuscript online:  13 March 2024
PACS:  04.70.Dy (Quantum aspects of black holes, evaporation, thermodynamics)  
  04.50.Kd (Modified theories of gravity)  
  05.70.Fh (Phase transitions: general studies)  
Fund: This work was supported by the National Natural Science Foundation of China (Grant No. 11903025), the Starting Fund of China West Normal University (Grant No. 18Q062), the Sichuan Science and Technology Program (Grant No. 2023ZYD0023), the Sichuan Youth Science and Technology Innovation Research Team (Grant No. 21CXTD0038), and the Natural Science Foundation of Sichuan Province (Grant No. 2022NSFSC1833).
Corresponding Authors:  Yu-Ren Shi     E-mail:  qqjiangphys@yeah.net;gpliphys@yeah.net

Cite this article: 

Ping-Hui Mou(牟平辉), Qing-Quan Jiang(蒋青权), Ke-Jian He(何柯腱), and Guo-Ping Li(李国平) Triple points and phase transitions of D-dimensional dyonic AdS black holes with quasitopological electromagnetism in Einstein-Gauss-Bonnet gravity 2024 Chin. Phys. B 33 060401

[1] Abbott B P, et al. (LIGO Scientific and Virgo) 2016 Phys. Rev. Lett. 116 241103
[2] Abbott B P, et al. (LIGO Scientific and Virgo) 2016 Phys. Rev. D 94 064035
[3] Akiyama K, Alberdi A, Alef W, et al. (Event Horizon Telescope) 2019 Astrophys. J. Lett. 875 L1
[4] Akiyama K, Alberdi A, Alef W, et al. (Event Horizon Telescope) 2019 Astrophys. J. Lett. 875 L2
[5] Akiyama K, Alberdi A, Alef W, et al. (Event Horizon Telescope) 2019 Astrophys. J. Lett. 875 L3
[6] Akiyama K, Alberdi A, Alef W, et al. (Event Horizon Telescope) 2019 Astrophys. J. Lett. 875 L4
[7] Akiyama K, Alberdi A, Alef W, et al. (Event Horizon Telescope) 2022 Astrophys. J. Lett. 930 L12
[8] Akiyama K, Alberdi A, Alef W, et al. (Event Horizon Telescope) 2022 Astrophys. J. Lett. 930 L13
[9] Akiyama K, Alberdi A, Alef W, et al. (Event Horizon Telescope) 2022 Astrophys. J. Lett. 930 L14
[10] Liu J, Cai R G and Guo Z K 2021 Phys. Rev. Lett. 126 141303
[11] Cai R G, Fu C and Yu W W 2022 Phys. Rev. D 105 103520
[12] Cai R G, Guo Z K, Hu B, Liu C, Lu Y, Ni W T, Ruan W H, Seto N, Wang G and Wu Y L 2023 arXiv:2305.04551
[gr-qc]
[13] Xu H, Chen S, Guo Y, Jiang J, Wang B, Xu J, Xue Z, Caballero R N, Yuan J and Xu Y, et al. 2023 Res. Astron. Astrophys. 23 075024
[14] Gralla S E, Holz D E and Wald R M 2019 Phys. Rev. D 100 024018
[15] Gralla S E, Lupsasca A and Marrone D P 2020 Phys. Rev. D 102 124004
[16] Li G P and He K J 2021 J. Cosmol. Astropart. Phys. 06 037
[17] Gan Q, Wang P, Wu H and Yang H 2021 Phys. Rev. D 104 044049
[18] Zeng X X, He K J and Li G P 2022 Sci. China Phys. Mech. Astron. 65 290411
[19] Hadar S, Kapec D, Lupsasca A and Strominger A 2022 Class. Quantum Grav. 39 215001
[20] Wang H M, Lin Z C and Wei S W 2022 Nucl. Phys. B 985 116026
[21] Hou Y, Zhang Z, Yan H, Guo M and Chen B 2022 Phys. Rev. D 106 064058
[22] Chen S B, Jing J L, Qian W L and Wang B 2023 Sci. China Phys. Mech. Astron. 66 260401
[23] Bardeen J M, Carter B and Hawking S W 1973 Commun. Math. Phys. 31 161
[24] Bekenstein J D 1973 Phys. Rev. D 7 2333
[25] Hawking S W 1975 Commun. Math. Phys. 43 199
[26] Hawking S W and Page D N 1983 Commun. Math. Phys. 87 577
[27] Maldacena J M 1998 Adv. Theor. Math. Phys. 2 231
[28] Gubser S S, Klebanov I R and Polyakov A M 1998 Phys. Lett. B 428 105
[29] Witten E 1998 Adv. Theor. Math. Phys. 2 253
[30] Witten E 1998 Adv. Theor. Math. Phys. 2 505
[31] Chamblin A, Emparan R, Johnson C V and Myers R C 1999 Phys. Rev. D 60 064018
[32] Chamblin A, Emparan R, Johnson C V and Myers R C 1999 Phys. Rev. D 60 104026
[33] Surya S, Schleich K and Witt D M 2001 Phys. Rev. Lett. 86 5231
[34] Cho Y M and Neupane I P 2002 Phys. Rev. D 66 024044
[35] Shen J, Wang B, Lin C Y, Cai R G and Su R K 2007 J. High Energy Phys. 2007 037
[36] Cai R G, Kim S P and Wang B 2007 Phys. Rev. D 76 024011
[37] Kastor D, Ray S and Traschen J 2009 Class. Quant. Grav. 26 195011
[38] Dolan B P 2011 Class. Quant. Grav. 28 235017
[39] Cvetic M, Gibbons G W, Kubiznak D and Pope C N 2011 Phys. Rev. D 84 024037
[40] Dolan B P, Kastor D, Kubiznak D, Mann R B and Traschen J 2013 Phys. Rev. D 87 104017
[41] Kastor D, Ray S and Traschen J 2010 Class. Quant. Grav. 27 235014
[42] Castro A, Dehmami N, Giribet G and Kastor D 2013 J. High Energy Phys. 07 164
[43] Mahmoud El-Menoufi B, Ett B, Kastor D and Traschen J 2013 Class. Quant. Grav. 30 155003
[44] Kubizñák D and Mann R B 2012 J. High Energy Phys. 07 033
[45] Gunasekaran S, Mann R B and Kubizñák D 2012 J. High Energy Phys. 11 110
[46] Chen S B, Liu X F, Liu C Q and Jing J L 2013 Chin. Phys. Lett. 30 060401
[47] Cai R G, Cao L M, Li L and Yang R Q 2013 J. High Energy Phys. 09 005
[48] Mo J X and Liu W B 2014 Phys. Rev. D 89 084057
[49] Zou D C, Liu Y and Wang B 2014 Phys. Rev. D 90 044063
[50] Wei S W and Liu Y X 2015 Phys. Rev. Lett. 115 111302
[51] Altamirano N, Kubizñák D and Mann R B 2013 Phys. Rev. D 88 101502
[52] Altamirano N, Kubizñák D, Mann R B and Sherkatghanad Z 2014 Class. Quant. Grav. 31 042001
[53] Wei S W and Liu Y X 2014 Phys. Rev. D 90 044057
[54] Frassino A M, Kubizñák D, Mann R B and Simovic F 2014 J. High Energy Phys. 09 080
[55] Wei S W and Liu Y X 2022 Commun. Theor. Phys. 74 095402
[56] Kubizñák D, Mann R B and Teo M 2017 Class. Quant. Grav. 34 063001
[57] Zhang M, Zou D C and Yue R H 2017 Adv. High Energy Phys. 2017 3819246
[58] Dehyadegari A and Sheykhi A 2018 Phys. Rev. D 98 024011
[59] Dehghani A, Hendi S H and Mann R B 2020 Phys. Rev. D 101 084026
[60] Zhang C M, Zou D C and Zhang M 2020 Phys. Lett. B 811 135955
[61] Cui Y Z, Xu W and Zhu B 2023 Phys. Rev. D 107 044048
[62] Liu Y P, Cao H M and Xu W 2022 Gen. Rel. Grav. 54 5
[63] Qu Y, Tao J and Yang H 2023 Nucl. Phys. B 992 116234
[64] Bai N C, Song L and Tao J 2022 arXiv:2212.04341
[hep-th]
[65] Tavakoli M, Wu J and Mann R B 2022 J. High Energy Phys. 12 117
[66] Wu J and Mann R B 2023 Class. Quant. Grav. 40 06LT01
[67] Wu J and Mann R B 2023 Phys. Rev. D 107 084035
[68] Ghosh S G, Amir M and Maharaj S D 2017 Eur. Phys. J. C 77 530
[69] Glavan D and Lin C 2020 Phys. Rev. Lett. 124 081301
[70] Eslam Panah B, Jafarzade K and Hendi S H 2020 Nucl. Phys. B 961 115269
[71] Yang K, Gu B M, Wei S W and Liu Y X 2020 Eur. Phys. J. C 80 662
[72] Lin Z C, Yang K, Wei S W, Wang Y Q and Liu Y X 2020 Eur. Phys. J. C 80 1033
[73] Fernandes P G S 2020 Phys. Lett. B 805 135468
[74] Singh D V, Singh B K and Upadhyay S 2021 Annals Phys. 434 168642
[75] Yerra P K and Bhamidipati C 2022 Phys. Lett. B 835 137591
[76] Singh D V, Bhardwaj V K and Upadhyay S 2022 Eur. Phys. J. Plus 137 969
[77] Liu H S, Mai Z F, Li Y Z and Lü H 2020 Sci. China Phys. Mech. Astron. 63 240411
[78] Cisterna A, Giribet G, Oliva J and Pallikaris K 2020 Phys. Rev. D 101 124041
[79] Lei Y Q, Ge X H and Ran C 2021 Phys. Rev. D 104 046020
[80] Cisterna A, Henrıquez-Báez C, Mora N and Sanhueza L 2021 Phys. Rev. D 104 064055
[81] Barrientos J and Mena J 2022 Phys. Rev. D 106 044064
[82] Li M D, Wang H M and Wei S W 2022 Phys. Rev. D 105 104048
[83] Sekhmani Y, Lekbich H, El Boukili A and Sedra M B 2022 Eur. Phys. J. C 82 1087
[84] Ghosh S G, Papnoi U and Maharaj S D 2014 Phys. Rev. D 90 044068
[85] Ahmed M B, Cong W, Kubizñák D, Mann R B and Visser M R 2023 Phys. Rev. Lett. 130 181401
[86] Ahmed M B, Cong W, Kubizñák D, Mann R B and Visser M R 2023 J. High Energy Phys. 08 142
[1] New approach to measuring topological phase transitions utilizing Floquet technology
Xue-Ying Yang(杨雪滢), Wei Wu(吴伟), and Ping-Xing Chen(陈平形). Chin. Phys. B, 2024, 33(9): 090305.
[2] Noise-induced phase transition in the Vicsek model through eigen microstate methodology
Yongnan Jia(贾永楠), Jiali Han(韩佳丽), and Qing Li(李擎). Chin. Phys. B, 2024, 33(9): 090501.
[3] First-principles study on stability and superconductivity of ternary hydride LaYHx(x=2, 3, 6 and 8)
Xiao-Zhen Yan(颜小珍), Xing-Zi Zhou(周幸姿), Chao-Fei Liu(刘超飞), Yin-Li Xu(徐寅力), Yi-Bin Huang(黄毅斌), Xiao-Wei Sheng(盛晓伟), and Yang-Mei Chen(陈杨梅). Chin. Phys. B, 2024, 33(8): 086301.
[4] Topological phase transition in compressed van der Waals superlattice heterostructure BiTeCl/HfTe2
Zhilei Li(李志磊), Yinxiang Li(李殷翔), Yiting Wang(王奕婷), Wenzhi Chen(陈文执), and Bin Chen(陈斌). Chin. Phys. B, 2024, 33(8): 087102.
[5] Two-dimensional Sb net generated nontrivial topological states in SmAgSb2 probed by quantum oscillations
Jian Yuan(袁健), Xian-Biao Shi(石贤彪), Hong Du(杜红), Tian Li(李田), Chuan-Ying Xi(郗传英), Xia Wang(王霞), Wei Xia(夏威), Bao-Tian Wang(王保田), Rui-Dan Zhong(钟瑞丹), and Yan-Feng Guo(郭艳峰). Chin. Phys. B, 2024, 33(7): 077102.
[6] Multi-functional photonic spin Hall effect sensor controlled by phase transition
Jie Cheng(程杰), Rui-Zhao Li(李瑞昭), Cheng Cheng(程骋), Ya-Lin Zhang(张亚林), Sheng-Li Liu(刘胜利), and Peng Dong(董鹏). Chin. Phys. B, 2024, 33(7): 074203.
[7] First-principles study of structural and electronic properties of multiferroic oxide Mn3TeO6 under high pressure
Xiao-Long Pan(潘小龙), Hao Wang(王豪), Lei Liu(柳雷), Xiang-Rong Chen(陈向荣), and Hua-Yun Geng(耿华运). Chin. Phys. B, 2024, 33(7): 076102.
[8] Detecting the quantum phase transition from the perspective of quantum information in the Aubry-André model
Geng-Biao Wei(韦庚彪), Liu Ye(叶柳), and Dong Wang(王栋). Chin. Phys. B, 2024, 33(7): 070301.
[9] Unveiling the pressure-driven metal-semiconductor-metal transition in the doped TiS2
Jiajun Chen(陈佳骏), Xindeng Lv(吕心邓), Simin Li(李思敏), Yaqian Dan(但雅倩), Yanping Huang(黄艳萍), and Tian Cui(崔田). Chin. Phys. B, 2024, 33(6): 067104.
[10] Non-Kramers doublet ground state in a quaternary cubic compound PrRu2In2Zn18 investigated by ultrasonic measurements
Hua-Yuan Zhang(张化远), Kazuhei Wakiya, Mitsuteru Nakamura, Masahito Yoshizawa, and Yoshiki Nakanish. Chin. Phys. B, 2024, 33(6): 064301.
[11] Surface doping manipulation of the insulating ground states in Ta2Pd3Te5 and Ta2Ni3Te5
Bei Jiang(江北), Jingyu Yao(姚静宇), Dayu Yan(闫大禹), Zhaopeng Guo(郭照芃), Gexing Qu(屈歌星), Xiutong Deng(邓修同), Yaobo Huang(黄耀波), Hong Ding(丁洪), Youguo Shi(石友国), Zhijun Wang(王志俊), and Tian Qian(钱天). Chin. Phys. B, 2024, 33(6): 067402.
[12] Effects of individual heterogeneity on social contagions
Fu-Zhong Nian(年福忠) and Yu Yang(杨宇). Chin. Phys. B, 2024, 33(5): 058705.
[13] Emergent topological ordered phase for the Ising-XY model revealed by cluster-updating Monte Carlo method
Heyang Ma(马赫阳), Wanzhou Zhang(张万舟), Yanting Tian(田彦婷), Chengxiang Ding(丁成祥), and Youjin Deng(邓友金). Chin. Phys. B, 2024, 33(4): 040503.
[14] Chimera states of phase oscillator populations with nonlocal higher-order couplings
Yonggang Wu(伍勇刚), Huajian Yu(余华健), Zhigang Zheng(郑志刚), and Can Xu(徐灿). Chin. Phys. B, 2024, 33(4): 040504.
[15] Spin direction dependent quantum anomalous Hall effect in two-dimensional ferromagnetic materials
Yu-Xian Yang(杨宇贤) and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2024, 33(4): 047101.
No Suggested Reading articles found!