|
|
Kármán vortex street in a spin-orbit-coupled Bose-Einstein condensate with PT symmetry |
Kai-Hua Shao(邵凯花)1, Bao-Long Xi(席保龙)1, Zhong-Hong Xi(席忠红)1,2, Pu Tu(涂朴)1,3, Qing-Qing Wang(王青青)1, Jin-Ping Ma(马金萍)1, Xi Zhao(赵茜)1, and Yu-Ren Shi(石玉仁)1,† |
1 College of Physics and Electronic Engineering, Northwest Normal University, Lanzhou 730070, China; 2 College of Physics and Hydropower Engineering, Gansu Normal College For Nationalities, Hezuo 747000, China; 3 College of Intelligent Manufacturing, Sichuan University of Arts and Science, Dazhou 635000, China |
|
|
Abstract The dynamics of spin-orbit-coupled Bose-Einstein condensate with parity-time symmetry through a moving obstacle potential is simulated numerically. In the miscible two-component condensate, the formation of the Kármán vortex street is observed in one component, while 'the half-quantum vortex street' is observed in the other component. Other patterns of vortex shedding, such as oblique vortex dipoles, V-shaped vortex pairs, irregular turbulence, and combined modes of various wakes, can also be found. The ratio of inter-vortex spacing in one row to the distance between vortex rows is approximately $0.18$, which is less than the stability condition $0.28$ of classical fluid. The drag force acting on the obstacle potential is simulated. The parametric regions of Kármán vortex street and other vortex patterns are calculated. The range of Kármán vortex street is surrounded by the region of combined modes. In addition, spin-orbit coupling disrupts the symmetry of the system and the gain-loss affects the local particle distribution of the system, which leads to the local symmetry breaking of the system, and finally influences the stability of the Kármán vortex street. Finally, we propose an experimental protocol to realize the Kármán vortex street in a system.
|
Received: 13 December 2023
Revised: 13 February 2024
Accepted manuscript online: 22 February 2024
|
PACS:
|
05.30.Jp
|
(Boson systems)
|
|
03.75.Mn
|
(Multicomponent condensates; spinor condensates)
|
|
03.75.Kk
|
(Dynamic properties of condensates; collective and hydrodynamic excitations, superfluid flow)
|
|
11.30.Er
|
(Charge conjugation, parity, time reversal, and other discrete symmetries)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 12065022 and 12147213). |
Corresponding Authors:
Yu-Ren Shi
E-mail: shiyr@nwnu.edu.cn
|
Cite this article:
Kai-Hua Shao(邵凯花), Bao-Long Xi(席保龙), Zhong-Hong Xi(席忠红), Pu Tu(涂朴), Qing-Qing Wang(王青青), Jin-Ping Ma(马金萍), Xi Zhao(赵茜), and Yu-Ren Shi(石玉仁) Kármán vortex street in a spin-orbit-coupled Bose-Einstein condensate with PT symmetry 2024 Chin. Phys. B 33 060501
|
[1] Bose V 1924 Zeitschrift fur Physik 26 178 [2] Anderson M H, Ensher J R, Matthews M R, Wieman C E and Cornell E A 1995 Science 269 198 [3] Edwards M, Dodd R J, Clark C W, Ruprecht P A and Burnett K 1996 Phys. Rev. A 53 R1950 [4] Davis K B, Mewes M O, Andrews M R, van Druten N J, Durfee D S, Kurn D M and Ketterle W 1995 Phys. Rev. Lett. 75 3969 [5] Jackson B, McCann J F and Adams C S 1998 Phys. Rev. Lett. 80 3903 [6] Reeves M T, Billam T P, Anderson B P and Bradley A S 2015 Phys. Rev. Lett. 114 155302 [7] Sasaki K, Suzuki N and Saito H 2010 Phys. Rev. Lett. 104 150404 [8] Nore C, Huepe C and Brachet M E 2000 Phys. Rev. Lett. 84 2191 [9] Aftalion A, Du Q and Pomeau Y 2003 Phys. Rev. Lett. 91 090407 [10] Kim I and Wu X L 2015 Phys. Rev. E 92 043011 [11] Crowdy D G and Krishnamurthy V S 2017 Phys. Rev. Fluids 2 114701 [12] Iiman M 2019 Phys. Rev. E 99 062203 [13] Boniface P, Lebon L, Limat L and Receveur M 2017 Europhys. Lett. 117 34001 [14] Saito H, Tazaki K and Aioi T 2013 Europhys. Lett. 9 121 [15] Stagg G W, Parker N G and Barenghi C F 2014 J. Phys. B: Atom. Mol. Opt. Phys. 47 095304 [16] Ancilotto F, Barranco M, Eloranta J and Pi M 2017 Phys. Rev. B 96 064503 [17] Wang J, Li X L, Ren X P, Fan X B, Zhou Y S, Meng H J, Wan X H, Zhang J, Shao K H and Shi Y R 2022 Euro. Phys. J. Plus 137 1216 [18] Kwon W J, Moon G, Choi J Y, Seo S W and Shin Y 2014 Phys. Rev. A 90 063627 [19] Kwon W J, Moon G, Choi J Y, Seo S W and Shin Y 2015 Phys. Rev. A 91 053615 [20] Kwon W J, Seo S W and Shin Y 2015 Phys. Rev. A 92 033613 [21] Lin Y J, García K J and Spielman I B 2011 Nature 471 83 [22] Wang P J, Yu Z Q, Fu Z K, Miao J, Huang L H, Chai S J, Zhai H and Zhang J 2012 Phys. Rev. Lett. 109 095301 [23] Cheuk L W, Sommer A T, Hadzibabic Z, Yefsah T, Bakr W S and Zwierlein M W 2012 Phys. Rev. Lett. 109 095302 [24] Cabedo J and Celi A 2021 Phys. Rev. Res 23 043215 [25] Gong M, Tewari S and Zhang C 2011 Phys. Rev. Lett. 107 195303 [26] Koralek J D, Weber C P, Orenstein J, Bernevig B A, Zhang S C, Mack S and Awschalom D D 2009 Nature 458 7238 [27] Bender C M 2007 Reports on Progress in Physics 70 947 [28] El-Ganainy R, Makris K G, Khajavikhan M, Musslimani Z H, Rotter S and Christodoulides D N 2018 Nat. Phys. 14 11 [29] Robins N P, Figl C, Jeppesen M, Dennis G R and Close J D 2008 Nat. Phys. 4 731 [30] Li J, Harter A K, Liu J, Melo L, Joglekar Y N and Luo L 2019 Nat. Commun. 10 855 [31] Sakaguchi H and Malomed B A 2016 New J. Phys. 18 105005 [32] Li J R, Wang Z A and Zhang L L 2023 Annals of Physics 448 169165 [33] Qin J L, Zhou L and Dong G J 2022 New J. Phys. 24 063025 [34] Kato M, Zhang X F and Saito H 2017 Phys. Rev. A 95 043605 [35] Cui X L 2022 Phys. Rev. Res. 4 013047 [36] Wang L X, Dai C Q, Wen L, Liu T, Jiang H F, Saito H, Zhang S G and Zhang X F 2018 Phys. Rev. A 97 063607 [37] Zhang X F, Du Z J, Tan R B, Dong R F, Chang H and Zhang S G 2014 Annals of Physics 346 154 [38] Wang D S, Song S W, Xiong B and Liu W M 2011 Phys. Rev. A 84 053607 [39] Ishino S, Tsubota M and Takeuchi H 2013 Phys. Rev. A 88 063617 [40] Bao W Z, Chern I L and Lim F Y 2006 Journal of Computational Physics 219 836 [41] Kwon W J, Kim J H, Seo S W and Shin Y 2016 Phys. Rev. Lett. 117 245301 [42] Schwarz L, Cartarius H, Musslimani Z H, Main J and Wunner G 2017 Phys. Rev. A 95 053613 [43] Seo S W, Kwon W J, Kang S and Shin Y 2016 Phys. Rev. Lett. 116 185301 [44] Frisch T, Pomeau Y and Rica S 1992 Phys. Rev. Lett. 69 1644 [45] Fujiyama S and Tsubota M 2009 Phys. Rev. B 79 094513 [46] Jimenez-García K, LeBlanc L J, Williams R A, Beeler M C, Qu C, Gong M, Zhang C and Spielman I B 2015 Phys. Rev. Lett. 114 125301 [47] Lin Z 2020 Ann. Phys. 533 1 [48] Raman C, Köhl M, Onofrio R, Durfee D S, Kuklewicz C E, Hadzibabic Z and Ketterle W 1999 Phys. Rev. Lett. 83 2502 [49] Neely T W, Samson E C, Bradley A S, Davis M J and Anderson B P 2010 Phys. Rev. Lett. 104 160401 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|