Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(6): 060501    DOI: 10.1088/1674-1056/ad2bf3
GENERAL Prev   Next  

Kármán vortex street in a spin-orbit-coupled Bose-Einstein condensate with PT symmetry

Kai-Hua Shao(邵凯花)1, Bao-Long Xi(席保龙)1, Zhong-Hong Xi(席忠红)1,2, Pu Tu(涂朴)1,3, Qing-Qing Wang(王青青)1, Jin-Ping Ma(马金萍)1, Xi Zhao(赵茜)1, and Yu-Ren Shi(石玉仁)1,†
1 College of Physics and Electronic Engineering, Northwest Normal University, Lanzhou 730070, China;
2 College of Physics and Hydropower Engineering, Gansu Normal College For Nationalities, Hezuo 747000, China;
3 College of Intelligent Manufacturing, Sichuan University of Arts and Science, Dazhou 635000, China
Abstract  The dynamics of spin-orbit-coupled Bose-Einstein condensate with parity-time symmetry through a moving obstacle potential is simulated numerically. In the miscible two-component condensate, the formation of the Kármán vortex street is observed in one component, while 'the half-quantum vortex street' is observed in the other component. Other patterns of vortex shedding, such as oblique vortex dipoles, V-shaped vortex pairs, irregular turbulence, and combined modes of various wakes, can also be found. The ratio of inter-vortex spacing in one row to the distance between vortex rows is approximately $0.18$, which is less than the stability condition $0.28$ of classical fluid. The drag force acting on the obstacle potential is simulated. The parametric regions of Kármán vortex street and other vortex patterns are calculated. The range of Kármán vortex street is surrounded by the region of combined modes. In addition, spin-orbit coupling disrupts the symmetry of the system and the gain-loss affects the local particle distribution of the system, which leads to the local symmetry breaking of the system, and finally influences the stability of the Kármán vortex street. Finally, we propose an experimental protocol to realize the Kármán vortex street in a system.
Keywords:  Kármán vortex street      Bose-Einstein condensate      spin-orbit-coupled      parity-time symmetry  
Received:  13 December 2023      Revised:  13 February 2024      Accepted manuscript online:  22 February 2024
PACS:  05.30.Jp (Boson systems)  
  03.75.Mn (Multicomponent condensates; spinor condensates)  
  03.75.Kk (Dynamic properties of condensates; collective and hydrodynamic excitations, superfluid flow)  
  11.30.Er (Charge conjugation, parity, time reversal, and other discrete symmetries)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 12065022 and 12147213).
Corresponding Authors:  Yu-Ren Shi     E-mail:  shiyr@nwnu.edu.cn

Cite this article: 

Kai-Hua Shao(邵凯花), Bao-Long Xi(席保龙), Zhong-Hong Xi(席忠红), Pu Tu(涂朴), Qing-Qing Wang(王青青), Jin-Ping Ma(马金萍), Xi Zhao(赵茜), and Yu-Ren Shi(石玉仁) Kármán vortex street in a spin-orbit-coupled Bose-Einstein condensate with PT symmetry 2024 Chin. Phys. B 33 060501

[1] Bose V 1924 Zeitschrift fur Physik 26 178
[2] Anderson M H, Ensher J R, Matthews M R, Wieman C E and Cornell E A 1995 Science 269 198
[3] Edwards M, Dodd R J, Clark C W, Ruprecht P A and Burnett K 1996 Phys. Rev. A 53 R1950
[4] Davis K B, Mewes M O, Andrews M R, van Druten N J, Durfee D S, Kurn D M and Ketterle W 1995 Phys. Rev. Lett. 75 3969
[5] Jackson B, McCann J F and Adams C S 1998 Phys. Rev. Lett. 80 3903
[6] Reeves M T, Billam T P, Anderson B P and Bradley A S 2015 Phys. Rev. Lett. 114 155302
[7] Sasaki K, Suzuki N and Saito H 2010 Phys. Rev. Lett. 104 150404
[8] Nore C, Huepe C and Brachet M E 2000 Phys. Rev. Lett. 84 2191
[9] Aftalion A, Du Q and Pomeau Y 2003 Phys. Rev. Lett. 91 090407
[10] Kim I and Wu X L 2015 Phys. Rev. E 92 043011
[11] Crowdy D G and Krishnamurthy V S 2017 Phys. Rev. Fluids 2 114701
[12] Iiman M 2019 Phys. Rev. E 99 062203
[13] Boniface P, Lebon L, Limat L and Receveur M 2017 Europhys. Lett. 117 34001
[14] Saito H, Tazaki K and Aioi T 2013 Europhys. Lett. 9 121
[15] Stagg G W, Parker N G and Barenghi C F 2014 J. Phys. B: Atom. Mol. Opt. Phys. 47 095304
[16] Ancilotto F, Barranco M, Eloranta J and Pi M 2017 Phys. Rev. B 96 064503
[17] Wang J, Li X L, Ren X P, Fan X B, Zhou Y S, Meng H J, Wan X H, Zhang J, Shao K H and Shi Y R 2022 Euro. Phys. J. Plus 137 1216
[18] Kwon W J, Moon G, Choi J Y, Seo S W and Shin Y 2014 Phys. Rev. A 90 063627
[19] Kwon W J, Moon G, Choi J Y, Seo S W and Shin Y 2015 Phys. Rev. A 91 053615
[20] Kwon W J, Seo S W and Shin Y 2015 Phys. Rev. A 92 033613
[21] Lin Y J, García K J and Spielman I B 2011 Nature 471 83
[22] Wang P J, Yu Z Q, Fu Z K, Miao J, Huang L H, Chai S J, Zhai H and Zhang J 2012 Phys. Rev. Lett. 109 095301
[23] Cheuk L W, Sommer A T, Hadzibabic Z, Yefsah T, Bakr W S and Zwierlein M W 2012 Phys. Rev. Lett. 109 095302
[24] Cabedo J and Celi A 2021 Phys. Rev. Res 23 043215
[25] Gong M, Tewari S and Zhang C 2011 Phys. Rev. Lett. 107 195303
[26] Koralek J D, Weber C P, Orenstein J, Bernevig B A, Zhang S C, Mack S and Awschalom D D 2009 Nature 458 7238
[27] Bender C M 2007 Reports on Progress in Physics 70 947
[28] El-Ganainy R, Makris K G, Khajavikhan M, Musslimani Z H, Rotter S and Christodoulides D N 2018 Nat. Phys. 14 11
[29] Robins N P, Figl C, Jeppesen M, Dennis G R and Close J D 2008 Nat. Phys. 4 731
[30] Li J, Harter A K, Liu J, Melo L, Joglekar Y N and Luo L 2019 Nat. Commun. 10 855
[31] Sakaguchi H and Malomed B A 2016 New J. Phys. 18 105005
[32] Li J R, Wang Z A and Zhang L L 2023 Annals of Physics 448 169165
[33] Qin J L, Zhou L and Dong G J 2022 New J. Phys. 24 063025
[34] Kato M, Zhang X F and Saito H 2017 Phys. Rev. A 95 043605
[35] Cui X L 2022 Phys. Rev. Res. 4 013047
[36] Wang L X, Dai C Q, Wen L, Liu T, Jiang H F, Saito H, Zhang S G and Zhang X F 2018 Phys. Rev. A 97 063607
[37] Zhang X F, Du Z J, Tan R B, Dong R F, Chang H and Zhang S G 2014 Annals of Physics 346 154
[38] Wang D S, Song S W, Xiong B and Liu W M 2011 Phys. Rev. A 84 053607
[39] Ishino S, Tsubota M and Takeuchi H 2013 Phys. Rev. A 88 063617
[40] Bao W Z, Chern I L and Lim F Y 2006 Journal of Computational Physics 219 836
[41] Kwon W J, Kim J H, Seo S W and Shin Y 2016 Phys. Rev. Lett. 117 245301
[42] Schwarz L, Cartarius H, Musslimani Z H, Main J and Wunner G 2017 Phys. Rev. A 95 053613
[43] Seo S W, Kwon W J, Kang S and Shin Y 2016 Phys. Rev. Lett. 116 185301
[44] Frisch T, Pomeau Y and Rica S 1992 Phys. Rev. Lett. 69 1644
[45] Fujiyama S and Tsubota M 2009 Phys. Rev. B 79 094513
[46] Jimenez-García K, LeBlanc L J, Williams R A, Beeler M C, Qu C, Gong M, Zhang C and Spielman I B 2015 Phys. Rev. Lett. 114 125301
[47] Lin Z 2020 Ann. Phys. 533 1
[48] Raman C, Köhl M, Onofrio R, Durfee D S, Kuklewicz C E, Hadzibabic Z and Ketterle W 1999 Phys. Rev. Lett. 83 2502
[49] Neely T W, Samson E C, Bradley A S, Davis M J and Anderson B P 2010 Phys. Rev. Lett. 104 160401
[1] Effects of drive imbalance on the particle emission from a Bose-Einstein condensate in a one-dimensional lattice
Long-Quan Lai(赖龙泉) and Zhao Li(李照). Chin. Phys. B, 2024, 33(3): 030308.
[2] Dynamical nonlinear excitations induced by interaction quench in a two-dimensional box-trapped Bose-Einstein condensate
Zhen-Xia Niu(牛真霞) and Chao Gao(高超). Chin. Phys. B, 2024, 33(2): 020314.
[3] Super-ballistic diffusion in a quasi-periodic non-Hermitian driven system with nonlinear interaction
Jian-Zheng Li(李建政), Guan-Ling Li(李观玲), and Wen-Lei Zhao(赵文垒). Chin. Phys. B, 2023, 32(9): 096601.
[4] Special breathing structures induced by bright solitons collision in a binary dipolar Bose-Einstein condensates
Gen Zhang(张根), Li-Zheng Lv(吕李政), Peng Gao(高鹏), and Zhan-Ying Yang(杨战营). Chin. Phys. B, 2023, 32(11): 110303.
[5] Mode dynamics of Bose-Einstein condensates in a single-well potential
Yaojun Ying(应耀俊), Lizhen Sun(孙李真), and Haibin Li(李海彬). Chin. Phys. B, 2023, 32(10): 100310.
[6] Anderson localization of a spin-orbit coupled Bose-Einstein condensate in disorder potential
Huan Zhang(张欢), Sheng Liu(刘胜), and Yongsheng Zhang(张永生). Chin. Phys. B, 2022, 31(7): 070305.
[7] Superfluid to Mott-insulator transition in a one-dimensional optical lattice
Wenliang Liu(刘文良), Ningxuan Zheng(郑宁宣), Jun Jian(蹇君), Li Tian(田丽), Jizhou Wu(武寄洲), Yuqing Li(李玉清), Yongming Fu(付永明), Peng Li(李鹏), Vladimir Sovkov, Jie Ma(马杰), Liantuan Xiao(肖连团), and Suotang Jia(贾锁堂). Chin. Phys. B, 2022, 31(7): 073702.
[8] Vortex chains induced by anisotropic spin-orbit coupling and magnetic field in spin-2 Bose-Einstein condensates
Hao Zhu(朱浩), Shou-Gen Yin(印寿根), and Wu-Ming Liu(刘伍明). Chin. Phys. B, 2022, 31(6): 060305.
[9] Parity-time symmetric acoustic system constructed by piezoelectric composite plates with active external circuits
Yang Zhou(周扬), Zhang-Zhao Yang(杨彰昭), Yao-Yin Peng(彭尧吟), and Xin-Ye Zou(邹欣晔). Chin. Phys. B, 2022, 31(6): 064304.
[10] Measuring gravitational effect of superintense laser by spin-squeezed Bose—Einstein condensates interferometer
Eng Boon Ng and C. H. Raymond Ooi. Chin. Phys. B, 2022, 31(5): 053701.
[11] Manipulating vortices in F=2 Bose-Einstein condensates through magnetic field and spin-orbit coupling
Hao Zhu(朱浩), Shou-Gen Yin(印寿根), and Wu-Ming Liu(刘伍明). Chin. Phys. B, 2022, 31(4): 040306.
[12] Spin current in a spinor Bose-Einstein condensate induced by a gradient magnetic field
Li Tian(田丽), Ningxuan Zheng(郑宁宣), Jun Jian(蹇君), Wenliang Liu(刘文良), Jizhou Wu(武寄洲), Yuqing Li(李玉清), Yongming Fu(付永明), Peng Li(李鹏), Vladimir Sovkov, Jie Ma(马杰), Liantuan Xiao(肖连团), and Suotang Jia(贾锁堂). Chin. Phys. B, 2022, 31(11): 110302.
[13] Two-body exceptional points in open dissipative systems
Peize Ding(丁霈泽) and Wei Yi(易为). Chin. Phys. B, 2022, 31(1): 010309.
[14] Disorder in parity-time symmetric quantum walks
Peng Xue(薛鹏). Chin. Phys. B, 2022, 31(1): 010311.
[15] Anti-$\mathcal{PT}$-symmetric Kerr gyroscope
Huilai Zhang(张会来), Meiyu Peng(彭美瑜), Xun-Wei Xu(徐勋卫), and Hui Jing(景辉). Chin. Phys. B, 2022, 31(1): 014215.
No Suggested Reading articles found!