Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(6): 060314    DOI: 10.1088/1674-1056/ad342b
GENERAL Prev   Next  

Decoding topological XYZ2 codes with reinforcement learning based on attention mechanisms

Qing-Hui Chen(陈庆辉)1, Yu-Xin Ji(姬宇欣)1, Ke-Han Wang(王柯涵)2, Hong-Yang Ma(马鸿洋)2, and Nai-Hua Ji(纪乃华)1,†
1 School of Information and Control Engineering, Qingdao University of Technology, Qingdao 266033, China;
2 School of Sciences, Qingdao University of Technology, Qingdao 266033, China
Abstract  Quantum error correction, a technique that relies on the principle of redundancy to encode logical information into additional qubits to better protect the system from noise, is necessary to design a viable quantum computer. For this new topological stabilizer code-$XYZ^{2}$ code defined on the cellular lattice, it is implemented on a hexagonal lattice of qubits and it encodes the logical qubits with the help of stabilizer measurements of weight six and weight two. However topological stabilizer codes in cellular lattice quantum systems suffer from the detrimental effects of noise due to interaction with the environment. Several decoding approaches have been proposed to address this problem. Here, we propose the use of a state-attention based reinforcement learning decoder to decode $XYZ^{2}$ codes, which enables the decoder to more accurately focus on the information related to the current decoding position, and the error correction accuracy of our reinforcement learning decoder model under the optimisation conditions can reach 83.27\% under the depolarizing noise model, and we have measured thresholds of 0.18856 and 0.19043 for $XYZ^{2}$ codes at code spacing of 3-7 and 7-11, respectively. our study provides directions and ideas for applications of decoding schemes combining reinforcement learning attention mechanisms to other topological quantum error-correcting codes.
Keywords:  quantum error correction      topological quantum stabilizer code      reinforcement learning      attention mechanism  
Received:  14 December 2023      Revised:  18 February 2024      Accepted manuscript online:  15 March 2024
PACS:  03.67.-a (Quantum information)  
  87.64.Aa (Computer simulation)  
  03.67.Pp (Quantum error correction and other methods for protection against decoherence)  
Fund: This work was supported by the Natural Science Foundation of Shandong Province, China (Grant No. ZR2021MF049) and Joint Fund of Natural Science Foundation of Shandong Province (Grant Nos. ZR2022LLZ012 and ZR2021LLZ001).
Corresponding Authors:  Qing-Quan Jiang, Guo-Ping Li     E-mail:  13964863452@126.com

Cite this article: 

Qing-Hui Chen(陈庆辉), Yu-Xin Ji(姬宇欣), Ke-Han Wang(王柯涵), Hong-Yang Ma(马鸿洋), and Nai-Hua Ji(纪乃华) Decoding topological XYZ2 codes with reinforcement learning based on attention mechanisms 2024 Chin. Phys. B 33 060314

[1] He Z, Fan X, Chu P and Ma H 2020 Acta Phys. Sin. 69 160301 (in Chinese)
[2] Knill E and Laflamme R 1997 Phys. Rev. A 55 900
[3] Looi S Y, Yu L, Gheorghiu, V and Griffiths R B 2008 Phys. Rev. A 78 042303
[4] Beale S J, Wallman J J, Gutiérrez M, Brown K R and Laflamme R 2018 Phys. Rev. Lett. 21 190501
[5] Farhi E, Goldstone J and Gutmann S 2014 arXiv:1411.4028 [quant-ph]
[6] Li S, Long G, Bai F, Song L and Zheng H 2001 Proc. Natl. Acad. Sci. USA 98 11847
[7] Varona S and Martin-Delgado M A 2020 Phys. Rev. A 102 032411
[8] Kitaev A 1997 Russ. Math. Surveys 52 1191
[9] Freedman M H and Meyer D A 2001 Found. Comput. Math. 1 325
[10] Hu L, Wu S H, Cai W, et al. 2019 Sci. Adv. 5 eaav2761
[11] Kitaev A Y 2003 Ann. Phys. 303 2
[12] Buerschaper O, Morampudi S C and Pollmann F 2014 Phys. Rev. B 90 195148
[13] Kitaev A 2006 Ann. Phys. 321 2
[14] Hermanns M, Kimchi I and Knolle J 2018 Annu. Rev. Conden. Matter Phys. 9 17
[15] Fuentes P, Martinez J E, Crespo P M and Garciafrias J 2020 Phys. Rev. A 102 012423
[16] Xue Y J, Wang H W, Tian Y B, Wang Y N, Wang Y X and Wang S M 2022 Quantum Engineering 2022
[17] Fujisaki J, Oshima H, Sato S and Fujii K 2021 Phys. Rev. Res. 4 043086
[18] Wang H, Song Z, Wang Y, Tian Y and Ma H 2020 Quantum Inf. Process. 21 280
[19] Gao X and Duan L M 2017 Nat. Commun. 8 662
[20] Carrasquilla J and Melko R G 2017 Nat. Phys. 13 431
[21] Liu N and Rebentrost P 2018 Phys. Rev. A 97 042315
[22] Davaasuren A, Suzuki Y, Fujii K and Koashi M 2020 Phys. Rev. Res. 2 033399
[23] Andreasson p, Johansson J, Liljestrand S and Granath M 2019 Quantum 3 183
[24] Bolens A and Heyl M 2021 Phys. Rev. Lett. 127 110502
[25] Mills K, Spanner M and Tamblyn I 2017 Phys. Rev. A 96 042113
[26] Zhang Y H, Zheng P L, Zhang Y and Deng D L 2020 Phys. Rev. Lett. 125 170501
[27] Wang H W, Xue Y J, Ma Y L, Hua N and Ma H Y 2021 Chin. Phys. B 31 010303
[28] Wootton J R and Loss D 2012 Phys. Rev. Lett. 109 160503
[29] Hutter A, Wootton J R and Loss D 2014 Phys. Rev. A 89 022326
[30] Hammar K, Orekhov A, Hybelius P W, Wisakanto A K, Srivastava B, Kockum A F and Granath M 2022 Phys. Rev. A 105 042616
[31] Denil M, Bazzani L, Larochelle H, et al. 2012 Neural Comput. 24 2151
[32] Waldherr G, Wang Y, Zaiser S, et al. 2014 Nature 506 204
[33] Lee Y C, Brell C G and Flammia S T 2017 J. Stat. Mech. 2017 083106
[34] Wootton J R 2015 J. Phys. A: Math. Theor. 48 215302
[35] Srivastava B, Kockum A F and Granath M 2022 Quantum 6 698
[36] Bahdanau D, Cho K and Bengio Y 2015 arXiv:1409.0473
[cs.CL]
[37] Soydaner D 2022 Neural Comput. Appl. 34 13371
[38] Sethi K, and Madhav Y V, Kumar R and Bera P 2021 J. Inf. Secur. Appl. 61 102923
[39] Lin T X, Su Z, Xu Q C, Xing R and Fang D F 2020 IEEE Access 8 69284
[40] Andreasson P, Johansson J, Liljestrand S and Granath M 2019 Quantum 3 183
[41] Cheung W C, Simchi-Levi D, Zhu R 2020 Proceedings of the 37th International Conference on Machine Learning 119 1843
[42] Denil M, Bazzani L, Larochelle H and De F N 2012 Neural Comput. 24 2151
[43] Nautrup H P, Delfpsse N, Dunjko V, Briegel H J and Friis N 2019 Quantum 3 215
[44] Faist P, Nezami S, Albert V V, Salton G, Pastawski F, Hayden P, et al. 2020 Phys. Rev. X 10 041018
[45] Varona S and Martin-Delgado M A 2020 Phys. Rev. A 102 032411
[46] Kumar N, Swain S N and Murthy C S R 2018 IEEE Trans. Network Service Manag. 15 718
[47] Roderick M, MacGlanshan J and Tellex S 2017 arXiv:1711.07478
[cs.LG]
[48] Mnih V, Kavukcuoglu K, Silver D, et al. 2015 Nature 518 529
[49] Williams R J 1992 Mach. Learn. 8 229
[50] Stephens A M 2014 Phys. Rev. A 89 022321
[1] Quafu-RL: The cloud quantum computers based quantum reinforcement learning
Yu-Xin Jin(靳羽欣), Hong-Ze Xu(许宏泽), Zheng-An Wang(王正安), Wei-Feng Zhuang(庄伟峰), Kai-Xuan Huang(黄凯旋), Yun-Hao Shi(时运豪), Wei-Guo Ma(马卫国), Tian-Ming Li(李天铭), Chi-Tong Chen(陈驰通), Kai Xu(许凯), Yu-Long Feng(冯玉龙), Pei Liu(刘培), Mo Chen(陈墨), Shang-Shu Li(李尚书), Zhi-Peng Yang(杨智鹏), Chen Qian(钱辰), Yun-Heng Ma(马运恒), Xiao Xiao(肖骁), Peng Qian(钱鹏), Yanwu Gu(顾炎武), Xu-Dan Chai(柴绪丹), Ya-Nan Pu(普亚南), Yi-Peng Zhang(张翼鹏), Shi-Jie Wei(魏世杰), Jin-Feng Zeng(曾进峰), Hang Li(李行), Gui-Lu Long(龙桂鲁), Yirong Jin(金贻荣), Haifeng Yu(于海峰), Heng Fan(范桁), Dong E. Liu(刘东), and Meng-Jun Hu(胡孟军). Chin. Phys. B, 2024, 33(5): 050301.
[2] Recurrent neural network decoding of rotated surface codes based on distributed strategy
Fan Li(李帆), Ao-Qing Li(李熬庆), Qi-Di Gan(甘启迪), and Hong-Yang Ma(马鸿洋). Chin. Phys. B, 2024, 33(4): 040307.
[3] Feedback control and quantum error correction assisted quantum multi-parameter estimation
Hai-Yuan Hong(洪海源), Xiu-Juan Lu(鲁秀娟), and Sen Kuang(匡森). Chin. Phys. B, 2023, 32(4): 040603.
[4] Performance of entanglement-assisted quantum codes with noisy ebits over asymmetric and memory channels
Ji-Hao Fan(樊继豪), Pei-Wen Xia(夏沛文), Di-Kang Dai(戴迪康), and Yi-Xiao Chen(陈一骁). Chin. Phys. B, 2023, 32(12): 120304.
[5] Approximate error correction scheme for three-dimensional surface codes based reinforcement learning
Ying-Jie Qu(曲英杰), Zhao Chen(陈钊), Wei-Jie Wang(王伟杰), and Hong-Yang Ma(马鸿洋). Chin. Phys. B, 2023, 32(10): 100307.
[6] An overview of quantum error mitigation formulas
Dayue Qin(秦大粤), Xiaosi Xu(徐晓思), and Ying Li(李颖). Chin. Phys. B, 2022, 31(9): 090306.
[7] Determination of quantum toric error correction code threshold using convolutional neural network decoders
Hao-Wen Wang(王浩文), Yun-Jia Xue(薛韵佳), Yu-Lin Ma(马玉林), Nan Hua(华南), and Hong-Yang Ma(马鸿洋). Chin. Phys. B, 2022, 31(1): 010303.
[8] Quantum computation and error correction based on continuous variable cluster states
Shuhong Hao(郝树宏), Xiaowei Deng(邓晓玮), Yang Liu(刘阳), Xiaolong Su(苏晓龙), Changde Xie(谢常德), and Kunchi Peng(彭堃墀). Chin. Phys. B, 2021, 30(6): 060312.
[9] Control of chaos in Frenkel-Kontorova model using reinforcement learning
You-Ming Lei(雷佑铭) and Yan-Yan Han(韩彦彦). Chin. Phys. B, 2021, 30(5): 050503.
[10] Exploring individuals' effective preventive measures against epidemics through reinforcement learning
Ya-Peng Cui(崔亚鹏), Shun-Jiang Ni (倪顺江), and Shi-Fei Shen(申世飞). Chin. Phys. B, 2021, 30(4): 048901.
[11] Optimal control strategy for COVID-19 concerning both life and economy based on deep reinforcement learning
Wei Deng(邓为), Guoyuan Qi(齐国元), and Xinchen Yu(蔚昕晨). Chin. Phys. B, 2021, 30(12): 120203.
[12] Encoding entanglement-assisted quantum stabilizer codes
Wang Yun-Jiang(王云江), Bai Bao-Ming(白宝明), Li Zhuo(李卓), Peng Jin-Ye(彭进业), and Xiao He-Ling(肖鹤玲) . Chin. Phys. B, 2012, 21(2): 020304.
[13] Jointly-check iterative decoding algorithm for quantum sparse graph codes
Shao Jun-Hu(邵军虎), Bai Bao-Ming(白宝明), Lin Wei(林伟), and Zhou Lin(周林). Chin. Phys. B, 2010, 19(8): 080307.
[14] Secure deterministic communication in a quantum loss channel using quantum error correction code
Wu Shuang(吴双), Liang Lin-Mei(梁林梅), and Li Cheng-Zu(李承祖). Chin. Phys. B, 2007, 16(5): 1229-1232.
No Suggested Reading articles found!